
983-0490-005

Application Note

UniSystem Computer Remote Control

This Application Note describes how to use computer remote control (CRC) commands to remotely
control your UniSystem programmer (UniSite-xpi/UniSite, 2900, 3980xpi/3980/3900, AutoSite, or
ProMaster  2500).

Note: This Application Note applies to UniSystem programmers running system software
Version 6.8 or higher.

The most likely reason for controlling your programmer in remote mode is that it allows you to use a
custom user interface.

This Application Note is divided into the following sections, which appear on the following pages:

Introduction
How Do CRC Commands Work? ..............................................................................  2

Getting Started
System Setup ..............................................................................................................  3
Creating A Custom Driver Program...........................................................................  7

Reference
Summary of CRC Commands ..................................................................................  13
Description of Standard CRC Commands................................................................. 19
Description of Extended CRC Commands ................................................................ 24
CRC Error Codes....................................................................................................... 48
XPI Parallel Port Interface. ........................................................................................ 57

Note: This Application Note is intended to help those Data I/O customers who are using or
developing a custom driver program to control a UniSystem programmer in remote mode.
If you are using your programmer in terminal mode or if you are using PROMlink  or
TaskLink  Automation Software to control your programmer in remote mode, you do not
need to read this Application Note.
For information about PROMlink or TaskLink, refer to the PROMlink User Manual or
TaskLink User Manual.  For information about terminal mode, remote mode, and UniSystem
programmers, refer to your programmer's User Manual.

 

DATA  I/O 
CUSTOMER
SUPPORT

AROUND THE WORLD

SERVICE
SATISFACTION



2

Introduction

How Do CRC Commands Work?
Figure 1 summarizes how CRC commands work.

Figure 1. Interaction between a Custom Driver Program and UniSystem Programmer (UniSite shown).

2380-1HOST COMPUTER (PC)

A custom driver program is created by the operator
or a second party and installed onto a host computer.

CRC commands are incorporated 
into a remote control computer 
software program (driver).  This 
driver program allows an operator 
to control a programmer.

The driver reacts to the response 
and uses it to generate messages 
and prompts the operator.

CRC commands

Response character (>, F, or ?) 
and sometimes data

RS232C or
Parallel Port

COMMUNICATION

UNISITE RUNNING IN
REMOTE MODE

As shown in Figure 1, CRC commands are incorporated into a remote control computer software
program (driver), which is installed on a host computer.  The driver sends CRC commands to the
programmer, which is running in remote mode.  This driver is created by you or a second party using
the information presented in this Application Note.

There are two types of drivers:

! Simple drivers require the use of a terminal emulator program to communicate with the
programmer.  With this type of driver, you run your terminal emulation software and, at the
prompt, you can type in the CRC commands or you can send a text file that contains CRC
commands.

! Complex drivers include the terminal emulation (or, for xpi programmers, an optional parallel
interface) software within the code.  One example of a complex driver is TaskLink software,
which includes a full menu-driven user interface as well as the ability to communicate with the
programmer.

For more information on drivers, see "Creating A Custom Driver Program" on page 7.



3

Getting Started

System Setup
Before you can use CRC commands, your programmer system must be set up in remote mode
(see Figure 2).

Figure 2. Typical Configuration for a PC Sending CRC Commands to a Programmer (UniSite)

2381-1

CUSTOM DRIVER
PROGRAM or TASKLINK HOST COMPUTER

(PC)

RS232C
or PARALLEL CABLE

UNISITE RUNNING IN
REMOTE MODE

To set up your programmer system in remote mode, do the following:

1. Turn off the power to your PC and programmer.

2. Set up your programmer and PC as described in the "Setup and Installation" section of your
Programmer's User Manual.  This includes connecting an RS232C cable (for serial
communication) or parallel cable (for optional high speed communication with xpi programmers)
between your PC and programmer.  The serial cable must be connected to the Remote (Handler)
port on the programmer.

Note: In this Application Note, references to the Remote port apply to the Handler port and
references to the Terminal port apply to the Auxiliary port on AutoSite, AutoSite/E, and 2500.

3. Turn on the power to your programmer and PC.

4. If your programmer is not already set up to run in remote mode, after the programmer boots and
completes its powerup self-test, set the programmer to operate in remote mode as described in the
"CRC" section in your Programmer's User Manual.  (These steps are summarized in "Entering
Remote (CRC) Mode" below.)

Note: To ensure correct operation of the remote port with the host computer, set the parameters
for the remote (Handler) port according to the host computer requirements.

Entering Remote (CRC) Mode
If your programmer is booted and running in terminal mode, to enter remote mode follow these steps:

1. Press F1 to get to the Main Menu.
2. Press M to select the More Commands menu.
3. Press R to select Computer Remote Control from the More Commands menu.

The programmer is now in remote control mode.

Note: In remote mode, the programmer will accept CRC commands from the host computer
connected to the programmer's Remote port or Parallel port (for xpi programmers).



4

Entering Remote Mode on Powerup

If you wish to set up your programmer to enter remote mode during powerup, do the following:

Note: Your host computer (which generates the CRC commands) must be connected to either the
Remote (Handler) Port or the Parallel Port (for xpi programmers) on your programmer.
CRC will not work on the Terminal (Auxiliary) port. If your host computer is connected to the
programmer's Remote port and no terminal is attached to the programmer's Terminal port,
the programmer enters remote mode automatically at powerup. If the Parallel port is the only
port connected, this will also cause the programmer to enter remote mode automatically on
power up of an xpi programmer.

1. After your programmer has finished booting in terminal mode, press F1 to get to the Main Menu.
2. Press M  to select the More Commands menu.
3. Press C to select the Configure System menu.
4. Press E to select Edit from the Configure Systems menu.
5. Press I to select Interface from the Edit menu. The programmer displays the interface parameters.
6. Move the cursor to the Power on CRC field and press Y.
7. Press F2 two times to return to the Configure System Parameters menu.
8. Press S to select Save from the Configure System Parameters menu.  The screen displays the Save

System Parameters menu.
9. Press 1 ENTER (RETURN) to select the Powerup Defaults file as the one in which system

parameters will be saved.
10. Press ENTER (RETURN) again so that the selection will be saved to the disk.

The next time you power up the programmer, it will enter remote mode automatically.

Exiting Remote Mode
To exit remote mode, send the Z (Z ENTER) command to the programmer.  When you exit remote
mode using the Z command, the programmer's parameters are reset to the way they were BEFORE
you entered remote mode.

Note: If you have a terminal attached to the Terminal port, and the User Port is set to T (for
Terminal/Auxiliary port), you can also exit remote mode by pressing CTRL + Z on the
terminal attached to the Terminal port.
When you exit remote mode using CTRL + Z on the terminal attached to the Terminal port,
the programmer's parameters remain the same as they were in remote mode.

Suspending Remote Mode

Remote mode can be suspended temporarily to allow you to go into terminal mode to view or change
parameter settings or the device data in memory.  To suspend remote mode, send the 49] command.
See the description of 49] on page 35 for more information.



5

Halting CRC Operations

To halt any command or any ongoing CRC operation, use one of the following commands from the
remote port or the parallel port.  Neither of the following two commands requires a RETURN (ENTER).
Both commands are immediate and both terminate any preceding command operation.

ASCII
Command

Hex
Code Description

ESC 1B Causes the programmer to unconditionally halt any operation except a
binary transfer.

BREAK N/A (Remote port only). Causes the programmer to unconditionally halt any
operation in progress. This includes all data communications transfers.
The data line must be held in the spacing condition for 110 ms to 700
ms.

DIRECTION N/A (Parallel port only). Changing the state of the DIRECTION line on the
parallel port causes the programmer to unconditionally halt any data
communications transfers. See "XPI Parallel Port Interface" on page 57.

Using Remote ON/OFF to Connect Multiple Programmers

You can use Remote ON/OFF to connect multiple programmers to a single host computer by doing
the following:

1. Connect one programmer to your host computer.

2. Boot the programmer in terminal mode and press F1 to get to the Main Menu.

3. Set the Remote On Code and Remote Off Code for the programmer in the More Commands/
Configure System/Edit/Interface Parameters menu.  The Remote On/Off codes are usually set
to 0, which means that they are disabled.  To enable Remote On/Off codes, set them to any ASCII
character other than zero (0).  When selecting the Remote On/Off Codes for your programmer,
make sure that the code is not the same as data that might be sent to the programmer.

Note: The Remote On/Off Codes are usually set to control characters (hex 01 to 1F) and are used
when transfers contain non-binary data.

When the Remote On/Off Codes are set to something other than zero, the programmer
ignores all data input after receiving the Remote Off Code until it receives the Remote On
Code.  After receiving the Remote On Code, the programmer processes commands and data
normally until another Remote Off Code is received.

4. Set up your programmer to enter remote mode as described on page 4.

5. Disconnect your programmer and repeat steps 1 through 4 for each programmer.

Note: To avoid possible data transmission conflicts, we recommend that you give each programmer
its own unique Remote On/Off Codes.

6. Connect all the programmers to your host computer.



6

CRC Default and User-Defined Settings

When remote mode is entered, certain defaults are set prior to the programmer’s accepting any
commands. The default settings are outlined below:

Description Setting

Upload/download port Remote port
Data source/destination RAM
Security fuse data (0 or 1) 0
Program security fuse No
Reject option (commercial or single) Commercial
Algorithm Type D (Standard Algorithms)
Logic verification option All
Number of verify passes (0,1, or 2) 2
Fill RAM before downloading No
Illegal bit check option No
Blank check option No
Enable yield tally option No
EE bulk erase option No
Odd/even byte swap for 16 bit option No
JEDEC I/O translate DIP/LCC option Yes
Continuity check option Yes
Compare electronic signature Yes
Host command Blank
I/O address offset FFFFFF
I/O format MOS technology (format 81)
Instrument control code (0,1, 2) 0
I/O timeout 30 seconds
Upload wait 0 seconds
Number of nulls 255
Serial set auto-increment mode No
Programming mode Single device
Total set size 1
Upload EOF delimiter flag Disabled
Download EOF delimiter flag Disabled

When you exit remote mode using the Z command (sending Z ENTER), the programmer's parameters
are reset to the way they were BEFORE you entered remote mode. If you wish to keep your CRC
parameter settings, you need to first use the FE] (save user-defined CRC parameters) command and,
each time you enter remote mode, use the FD] (restore user-defined CRC parameters) command.

If you exit remote mode by pressing CTRL + Z (from a terminal attached to the Terminal port), the
programmer's parameters remain the same as they were in remote mode.



7

Creating A Custom Driver Program
The following sections describe how to create a custom driver program:

♦ Getting Started with CRC   Describes how to download data from your PC to the programmer
using CRC commands through an RS232C connection.

♦ Example   Shows an example of CRC commands used to download data as described in the
"Getting Started" section.

♦ Response Characters   Describes what the driver can expect as a response from the
programmer.

♦ Exiting Code   Describes how your driver can tell the programmer to exit from remote mode.

Getting Started with CRC

The remote mode (CRC) command/response protocol is roughly the same whether you use the serial
remote port or the xpi's parallel port. This section will concentrate on the serial port. Terminal
emulation software is readily available for the serial port. However,  there is no analog for the parallel
port. Using a terminal emulator with remote mode on the serial port is a good way to become familiar
with the CRC command/response protocol before writing your own driver.

After you connect the RS232C cable to your programmer as described in your Programmer's User
Manual, the host computer needs to be running terminal emulation software capable of emulating a
DEC VT-100 in order to communicate with the programmer.

Terminal Emulation

For RS232 serial communication, choose a terminal emulation program such as the HyperTerminal
program included with Microsoft Windows, or create your own terminal emulator program.  Set the
program to emulate a DEC VT-100.  Initialize the host computer's port that is connected to the
programmer (usually COM1:) so that its settings are the same as the port settings on your programmer.
In most cases, set the serial port on your host computer to:

9600 Baud 8 bit data
No parity (parity off) Xon/Xoff handshaking
1 stop bit

Note: If you have any problems, make sure the programmer is in remote mode (and not disabled
using the Remote On/Off Codes), make sure the port settings are the same for the terminal
emulator and programmer, and make sure the cables are properly connected.

You might find it useful to set your terminal emulator to add LFs to the data sent to and from
the programmer (outbound and inbound data).  If you are sending text files containing CRC
commands to your programmer, you might also find it useful to set your terminal emulator to
send one line at a time and to strip line feeds (LFs) from the file.

Establishing First Contact

When first establishing contact with the programmer, it is usually a good idea to send a Display
Configuration command (01]).  This command will return a string of characters as follows:

RRR/SSSS/AAAA/MM/PPP/IIVV/JJVV/KKVV/QQ>  OR  SSSS/AAAA/MM/PPP/KK/QQ>

where RRR is the current ROM version (UniSite only), SSSS is the current system version, AAAA is
the Algorithm version, MM is the decimal number of 64K-byte banks of RAM memory available, PPP
is the decimal number of pin drivers available, II identifies the installed PSM (UniSite only; VV is the
version number), JJ identifies the installed FSM (UniSite only; VV is the version number), KK is a
hexadecimal number identifying the installed Base (VV shows the version number on UniSite only),
QQ is the decimal number of the PPI adapter installed (if QQ is 00, no PPI adapter is installed).



8

Note: The string returned by the view configuration command will be terminated with the response
character ">" and a carriage return.

A typical session might be to download a formatted data file output by a linker/locator to the
programmer, and then to program a device. A typical sequence follows:

1. Select the device first.  This is always a good idea, because selecting the device sets default
values and gives the programmer some basic information.

2. Set user data size, I/O offsets, or beginning RAM address if any, as these affect downloading
to the programmer.

♦♦♦♦ User Data Size is a hexadecimal value (usually set to the device size in bytes or to a
multiple of the device size in bytes for set operations) that is used to determine the data
block used in device operations.  The data block is the range in user RAM where you have
specified data can be stored.  Any data outside the data block is truncated (not stored).
The data block is defined by the Beginning RAM Address (start of the data block) and the
User Data Size, which is added to the Beginning RAM Address to determine the end of
the data block.  For example, if Beginning RAM Address was set to 006000 and User
Data Size was set to 004000, the data block where data is stored would be from 004000 to
009FFF (any data record sent to an address outside this range is discarded).

♦♦♦♦ I/O Offset specifies how much of an offset is used during a data transfer.  The I/O offset
is added to all addresses sent out from the programmer (data uploaded or sent to a disk
drive).  The I/O offset is subtracted from all addresses received by the programmer (data
downloaded or from a disk drive).  For example, if you set I/O offset to 001000, the data
downloaded to the programmer would be placed at the address specified by the data
record minus 001000 in user RAM.

If you set I/O offset to 000000, all data is stored at the address specified by the data (since
000000 or zero is subtracted from the address of the incoming data record).

If you set I/O offset to the default (FFFFFF), the programmer sets the I/O offset to the first
incoming address of data received from Input from Disk and Download operations.  For
example, if I/O offset is set to the default of FFFFFF, and the first data record is
downloaded with a specified address of 001000, the I/O offset is set to 001000.

♦♦♦♦ Beginning RAM Address specifies the address at which to begin storing data. For
example, if you specified a beginning RAM address of 001000, data with an address of
000000 (in the formatted data file) would be stored at RAM address 001000.

3. Select the I/O format of the file to be downloaded (this example uses Intel MCS-86 Hex format).
For the programmer, this would be format 88.

Note: Translation formats are described in your Programmer's User Manual.

4. Fill programmer RAM with 00 or FF so that you have a known starting point before
downloading your data. If you know the checksum of your data file, you may want to fill RAM
with 00 so that the checksum is computed only on the data loaded from the file.

5. Download the data file to the programmer.

6. Insert the devices in the programmer sockets.

7. Send a Program command to the programmer.

8. If the Program command failed (an "F" was returned by the programmer), inquire about the
failure (see example on next page).



9

Example

The "Getting Started with CRC" sequence (described above) would look like this:

Host Sends Programmer Returns Comment

01] RRR/SSSS/AAAA/MM/
PPP/IIVV/JJVV/KKVV/QQ>
OR
SSSS/AAAA/MM/PP/KK/QQ>

Establish contact.  For example, on a UniSite
programmer RRR/SSSS/MM/PPP/IIVV/
JJVV/KKVV/QQ could be 013/0480/0480/40/
028/02/00/00

AMD33] > Select AMD devices.

27C51234] > Select 27c512.

000000< > Set Beginning RAM Address to 000000.

000000; > Set User Data Size and Device Block Size to the
physical size of device (0x10000 bytes for the
27C512).
Setting user data size to 000000 (zero) sets the
user data size to the default size of the device.

000000: > Set beginning device address to 000000.

X varies View and clear any previous error status.

000000W > Set I/O offset to 000000.

88A > Select I/O format 88 (Intel MCS-86 Hex).

00^ > Fill RAM with 00s before downloading data.

I Send Input command, then start sending the data
file to the programmer. Once the entire file has
been downloaded to the programmer, the
programmer will send back a ">" or "F".

S XXXX> Optionally send checksum command. Programmer
will return the hexadecimal checksum value.
XXXX is a hexadecimal number.

P > or F Send program command.

If the programmer returned a failure response ("F"), you will want to inquire about the failure. There
are several different ways to get error information. For instance, you can do the following:

X XX,YY,...ZZ> Programmer returns hexadecimal error codes, then
clears the errors.  XX, YY, ZZ are hexadecimal
numbers.

/
(UniSite Only)

XXYY> Programmer returns the number of devices that
failed, and the number of devices in the sockets.
XX is the number of devices that failed.
YY is the number of devices in the sockets.



10

Host Sends Programmer Returns Comment

DF]
(UniSite Only)

AA BB CC DD EE FF GG HH...> Programmer returns the status of all the sockets.
The status is output as a string of hexadecimal
numbers, the first being status for socket 1, the last
for the last socket.
The numbers indicate status as follows:
Bit 7 = error
Bit 6 = non-blank device error
Bit 5 = device testing or overcurrent error
Bit 4 = invalid electronic ID error
Bit 3 = illegal bit error
Bit 2 = programming error
Bit 1 = verify error
Bit 0 = device detected

Optionally, you can instruct the programmer to perform testing before the "P" Program command (so
that you know all sockets contain programmable devices before issuing the Program command).  To
perform testing before programming, do the following:

DC] > or F Programmer performs a device check that includes
testing for correctly inserted devices.  Some
devices are also tested for continuity or shorts.

B > or F Programmer performs a blank check of the
devices. If all devices are blank, they should be
programmable.

T > or F If the Blank Check command returned an F, you
may send a T command to see if the devices can
still be programmed. The illegal bit test checks to
see if the non-blank devices can still be
programmed.

After programming, you may optionally send a Verify command "V" to perform a separate verify.



11

Response Characters

When a CRC command is sent to the PROGRAMMER, it returns a response character to the host
computer that indicates if the PROGRAMMER accepted or executed the command sent to it, failed
during execution of the command, or did not understand the command. The response character is
followed by a carriage-return. The response characters are:

> Indicates command has been accepted and/or completed
F Indicates the command has failed
? Indicates the command is invalid or not understood

Table 1 explains each of these response characters.  Depending on the command, the response can
also include data, a line feed, and null characters (ASCII 00).  If you want to ensure that a line feed is
always sent after a CRC command is entered, set the null count between 00 and FEh (the h following
the number designates a hexadecimal number and is not part of the number).  The default null count is
FFh, which does not send a line feed after the command is entered.

Table 1
Computer Remote Control Response Characters

ASCII Hex Description

> 3E Prompt   A prompt is sent when you enter CRC after an ESC or
BREAK has halted a command, or after a CRC command has been
completed.

F 46 Fail   If the programmer responds with an F, the programmer has
failed to run the last command entered because errors were
generated.  You can find out more about the errors by using one of
the error inquiry commands, such as X or / (the / command is
available on UniSite only).

Note: The X command causes the programmer to send back a
complete list of the last sixteen error codes.  The /
command causes the programmer to respond with the total
number of devices that failed, and the number of socketed
devices.

? 3F Question Mark   If the programmer responds to the command
with a ?, the programmer does not understand or support the
command.

If a command is sent to the programmer and it fails ("F" is returned), the typical approach would be to
then send an "X" command, which returns (and then clears) the errors that have occurred since the last
"X" command was sent. The most recent error is returned first.

Exiting Code

To exit CRC, send the Z exit command to the programmer. If you are writing your own driver, the
driver's exit command must send a Z followed by a carriage return character to the
programmer.



12



13

Reference

Summary of CRC Commands
The CRC commands are ASCII characters (letters or symbols) that are sometimes preceded by
alphanumeric entries.

To send a CRC command from your terminal emulator, type the command on the host computer and
press ENTER.

The command tables are broken up into standard and extended CRC commands. Standard CRC
commands are commonly used commands, such as Load, Program, and Verify. Extended CRC
commands are more specific device-related commands, such as Set Security Fuse, Fill Fuse Map, and
Set Vector Test Options.

Except where noted, the commands use the following notation conventions:
  Required command letters are printed in capitals in the summary table and also in the detailed

descriptions.
  Only uppercase characters can be used.
  Valid entries are defined in the detailed descriptions.
  Alphanumeric entries that can precede the command are represented by italicized lowercase

letters:
  h represents a hexadecimal digit.
  n represent a decimal digit.
  xxx...xxxx represents a string of characters.  If the string is a filename, it may use up to 15 total

characters:  optional drive letter (one character), colon (one character), name (eight
characters), a period (one character), and an extension (three characters).
For example, nn02] indicates that you may precede the 02] command with two decimal
digits.



14

Summary of Standard CRC Commands

Table 2: Summary of Standard CRC Commands

Command Sent Description Response

& (UniSite w/ SetSite) Insert Parts Mode (none)

/ (UniSite w/ SetSite) View Device Error status XXYY>

- Invert RAM >

hhhhhh: Select device begin address >

hhhhhh; Select user data size >

hhhhhh< Select memory begin address >

nn= Select I/O timeout >

nffA Enter translation format >

B Blank check >

C Compare to port >

D Set odd parity >

E Set even parity >

F Error status inquiry HHHHHHHH>

G Configuration inquiry DD>

H No operation >

I Input from port >

J Set 1 stop bit >

K Set 2 stop bits >

L (nnL for SetSite) Load RAM from device >

hhM Enter record size >

N Set no parity >

O Output to port >

P (nnP for SetSite) Program device >

Q Swap nibbles >

R (nnR for SetSite) Return status of device AAAAA/BB/C>

S (nnS for SetSite) View sumcheck HHHH>

T (nnT for SetSite) Illegal-bit test >

hhU Set nulls >

V (nnV for SetSite) Verify device >

hhhhhhhhW Set I/O offset >

X or nX Error code inquiry HH....HH>

Y Display parity errors HHHH>

Z Exit remote control (none)

\ Move memory block >

hh^ Clear/fill RAM with data >



15

Summary of Extended CRC Commands

Table 3. Summary of Extended CRC Commands

Command Description Response

01] Display system configuration (responses RRR,
II, JJ, VV are for UniSite Only). For example,
SSSS/AAAA/MM/PP/KK/ QQ> on the 3900.

RRR/SSSS/AAAA/MM/
PPP/IIVV/JJVV/KKVV/
QQ>

nn02] Set upload wait time >
n03] Set device ID verify option HHHHHHHH> or >
nn04] Set Remote port baud rate >
xxx...xxxx05] Set host command >
n06] Select data bits >
n07] Set next set member >
n08] (UniSite w/SetSite) Set programming mode >
nn09] Set the set size See text following
0A] Get programmer type PP…P>
0B] Get type of current device HH…H>
nn22] Set data word width >
n23] Select number of verify passes >
n24] Select security fuse programming option >
n26] Specify logic verify options >
n27] Set/clear enable/disable sec. fuse >
n28] Fill fuse map >
n29] Set reject count option >
hhh2A] or hh2A] Enable programming options >
hhh2B] or hh2B] Disable programming options >
nhh2C] Select memory fill option >
hh2D] Vector test options >
hh2E] Fill RAM with non-repeating test pattern >
2F] (nn2F] for SetSite) Return 8-character sumcheck HHHHHHHH>
xxx...xxxx30] Set data file name >
n31] Set data source/destination >
xxx...xxxx33] Select device manufacturer >
xxx...xxxx34] Select device part number >
xxx...xxxx38] Load file from disk >
39] Delete all RAM files >
xxx...xxxx3B] Delete disk file >
n3C] Set data transfer port >
xxx...xxxx3E] Select Keep Current algorithm >
n40] Upload device information See text following
n41] Perform self-test and upload results AAA...AA>
43] Upload yield tally See text following
45] High-speed download See text following
46] Clear yield tally >
49] Suspend remote (CRC) mode Displays terminal screen
n4A] Get filename from disk AAA...AA>
n4D] Select algorithm type >



16

Command Description Response

n4F] Set RAM device selection >
n52] Select media for algorithms (floppy disk or

MSM)
>

xxx...xxxx53] Save RAM data to disk file See text following
54] Upload device footnote See text following
55] Upload device-specific message See text following
56] (nn56] for SetSite) Upload memory verify failure ddPAAAAAAAAHHhh>
57] (nn57] for SetSite) Get checksum of operation See text following
58] Upload system ID HHHH HHHH HHHH>
n59] (AutoSite only) Enable/disable capacitor configuration test >
5A] Display list of parameters See text following
5B] Clear vector data >
5C] Load system files for Custom Menu (CM)

algorithm disk
>

5D] Write system files to CM disk >
5E] Write algorithms to CM disk >
n5F] Select the CM algorithm drive for creating CM

algorithms
>

60] Get number of sectors dd>
n61] Get sector configuration settings HHHH HHHH>
nhhhhhhhh62] Set sector configuration settings >
63] Reboot programmer
xxx...xxxx64] Select device part number for CM (use

xxx.xxxx33] to select the manufacturer)
A65] (2900/3900) Return software version number X.XX
66] Set abort on empty socket
67] Set checksum word size (8 or device width)
n67] Set checksum wordsize:

0 = 4 bit
1 = 8 bit
2 = device width

68] Device operations supported > (Hexadecimal number)
69] Display pin adapter information See text following
6C] MSM test See text following
n6D] Set checksum type >
n70] Get/test device electronic ID See text following
71] Stand-alone device erase >
hh…h72] Save system file >
hh…h73] Save algorithm file >
77] Switch to parallel port See text following
80] Echo test See text following
A7] Swap bytes >
C1] Diagnostic looping



17

Command Description Response

DC] Device check See text following
DF] (UniSite w/ SetSite) View status of sockets See text following
EB] Input JEDEC data from host >
EC] Output JEDEC data to host >
FC] Restore CRC entry default parameters >
FD] Restore user-defined CRC parameters >
FE] Save user-defined CRC parameters >



18

Description of CRC Commands
The following section describes the available CRC commands in more detail than the "Summary of
CRC Commands" section.

Control System Commands

The following paragraphs describe how to discontinue an operation or exit remote mode.  These
commands control the programmer rather than performing a specific programming-related operation
(such as blank testing or verifying devices).

No Operation (H)

Use the No Operation (ASCII character H) command to verify that communications have been
established between the programmer and remote computer (or terminal).  Send an H command to the
programmer immediately after CRC has been entered.  A prompt character (>) is returned if
communications have been established correctly between the programmer and remote computer (or
terminal).

Starting/Stopping Commands

Table 4 lists and describes the commands used to start or stop CRC operations.

Table 4. Computer Remote Control Commands
ASCII Hex Description

ENTER
or
RETURN

0D Carriage Return   Use ENTER from your PC to tell the programmer to run a
command.  All commands (except ESC and BREAK) are ignored if not followed by
ENTER.

ESC 1B Escape   Use ESC from your PC to tell the programmer to unconditionally
discontinue any operation in progress and send the prompt character, >.  The
programmer waits for further instructions.

BREAK Break   (Serial port only) Press BREAK from your PC to tell the programmer
to unconditionally discontinue any operation in progress and send the prompt
character, >. A BREAK is the equivalent of an intentional framing error, holding the
serial line active for 2 or 3 character widths.

DIR Direction Change   (Parallel port only) Changing the state of the direction line
during a data transfer operation (sending or receiving data) tells the programmer to
unconditionally discontinue the operation in progress.

Exiting Remote Mode

To exit CRC, send the Z ENTER command to the programmer. If you are writing your own driver, the
driver's exit command must send a Z ENTER (Z followed by the carriage return character) to the
programmer.



19

Description of Standard CRC Commands
The Standard CRC Commands are described in this section. Note that the lowercase letters preceding
the commands are arguments that must be specified according to the options listed under the
corresponding command description. Except where noted, the standard CRC commands use the
following notation conventions:

  Lowercase letters indicate arguments that must be specified
  h represents a hexadecimal digit.
  n represents a decimal digit.
  xxx...xxxx represents a string of characters or a filename.  Filenames are limited to 14 total

characters in length: drive specification (2 characters) plus name (8 characters) plus extension (3
characters preceded by a dot).  For example, nn02] indicates that you may precede the 02]
command with two decimal digits.

ASCII Description
&
(UniSite
w/ SetSite)

Insert Parts Mode   Puts a UniSite programmer in a wait state, allowing you time to
insert the devices.  UniSite will remain in this state until you push the SetSite socket
lever forward to the Start position to begin a device operation.  This command also clears
the device statistics, but does not affect the yield tally data.  The & command may be
halted by pressing ESC or pulling SetSite's socket lever to the Open (fully back) position.

/
(UniSite
w/ SetSite)

View Device Error Status   Returns the results of the previous device operation(s).  The
results are returned as a 4-character string in the form XXYY, where XX is the number of
devices that did not program successfully and YY is the total number of devices you
attempted to program.

- Invert RAM   Inverts the data in RAM within the address range defined by the
Beginning Memory Address and the Memory Block Size. If the User Data Size is set to
0, all of User Memory is inverted.

hhhhhh: Select Device Begin Address   Sets the first device address to load, program, or verify.
This command is also used as the destination address in a RAM to RAM block move.
The Device Begin Address defaults to 0 if no address precedes the colon.

hhhhhh; Set User Data and Device Block Size   Sets the number of bytes to be uploaded,
downloaded, transferred, or programmed. This command sets both the User Data Size
and the Device Block Size.

If hhhhhh; is greater than zero, the User Data Size and the Device Block Size are set to
hhhhhh unless hhhhhh is greater than the physical size of the device, in which case the
Device Block Size is set to the physical size of the device.

If hhhhhh; is zero (0;), the Device Block Size is set to the physical size of the device, and
the User Data Size is set to cover the entire device.  For example, for a 16-bit device of
4000 16-bit words in size, Device Block Size is set to 4000, and User Data Size is set to
8000.

If no argument precedes the semicolon (";" by itself), the User Data Size is set to the size
of User Memory, and the Device Block Size is set to the size of the currently selected
device.

hhhhhh< Select Memory Begin Address   Sets the first RAM address from which or to which
data will be transferred. This address is also used as the Begin RAM Address where the
programming data is located. The Memory Begin Address defaults to 0 if no address
precedes the <.



20

ASCII Description
nn= Select I/O Timeout   Specifies the number of seconds the programmer will wait during a

download before it returns an I/O timeout error (CRC error code 46). Valid arguments
range from 01 to 99 seconds. To disable the I/O Timeout, either specify an I/O Timeout
of 00 seconds, or send a null value (i.e., just send the = command). The I/O Timeout
defaults to 30 seconds.

nffA Enter Translation Format   Selects the instrument control code n and the data
translation format ff to be used for I/O data transfers through the Remote port. If 1 or 2
digits precede the A, the digits select the data translation format and the instrument
control code defaults to 0. If 3 digits precede the A, the first digit designates the
instrument control code and the last two digits specify the data translation format. For
example, sending 191A selects instrument control code 1 and data translation format 91.
The data translation formats and the instrument control codes are described in the
Translation Formats section in your Programmer's User Manual.

B Blank Check   Performs a blank check on the currently socketed device.

C Compare to Port   Compare data in the programmer's RAM with data received through
the Remote port using the current data translation format. (JEDEC format cannot be used
with this command: this command works only for memory formats.) The current Memory
Begin Address and I/O Offset are used to calculate the RAM address where the data is
located to compare against the incoming data.

D Set Odd Parity   Sets odd parity for serial data transfers through the Remote port.

E Set Even Parity   Sets even parity for serial data transfers through the Remote port.

F Error Status Inquiry   Returns a 32-bit number in the format HHHHHHHH, where
each H is a hex character. The 32-bit word defines the accumulated errors in the error
status word since the last F command. See the section titled "Error Status Word" in this
chapter for more information.

G Configuration Inquiry   Returns the configuration information in the form DD, where
DD is the disk version. For example, if 13 is returned, the disk version is 1.3. Additional
configuration information can be obtained by using the extended command 01].

H No Operation   Returns the > prompt followed by a RETURN (ENTER) and, if specified,
a line feed. No operation is performed.

I Input From Port   Instructs the programmer to accept formatted data from the Remote
port using the current data translation format and load that data into RAM. For memory
devices, the current Memory Begin Address and I/O Offset values are used to calculate
the RAM address where the input data is loaded. For logic devices, all of the fuse map
and structured vectors will be received and placed in RAM at the appropriate address.
You must select the JEDEC format if a logic device is selected.
An XOFF is sent to the host computer after the I command is received. This allows the
programmer time to get ready to receive data from the host computer. An XON is
automatically sent to the host computer to begin the data transfer if the instrument control
code is not 1. (This is done only for remote mode.) Even if your host system has
hardware handshake or XON/XOFF, we recommend you provide a 20 millisecond delay
between the time you send the I command and the first byte of data.
If your system does not have hardware handshake or XON/XOFF capability, you must
provide the delay to separate the I command from the first byte of data sent. A delay of
1/2 second to 8 seconds is suggested, depending on whether you use the Fill Memory
option and the size of your User Memory.



21

ASCII Description
J Set 1 Stop Bit   Sets one stop bit for serial data transfers through the Remote port.

K Set 2 Stop Bits   Sets two stop bits for serial data transfers through the Remote port.

L (nnL
for SetSite)

Load RAM From Device   Loads data from the currently selected device into
programmer RAM. For logic devices, the entire device is loaded. For memory devices,
specify the following parameters before you send this command:
  First device address copied from (Device Begin Address),
  First RAM address copied to (Memory Begin Address), and
  Size of the block copied (Memory Block Size)

For SetSite operation, send nnL, where nn specifies which device socket to load from.
Valid arguments for nn range from 01 to 08.

hhM Enter Record Size   Sets the number of data bytes per record for serial data transfers.

N Set No Parity   Disables parity checking for serial data transfers through the Remote
port.

O Output To Port   Instructs the programmer to output formatted data to the Remote port
using the current data translation format. For memory devices, the current parameter
settings for Memory Block Size, Memory Begin Address, and I/O Address Offset are
used.  The complete fuse map and structured vectors are output for logic devices. The
data translation format must be JEDEC if a logic device is selected.

P
(nnP for
SetSite)

Program Device   Programs a device with data in the programmer's RAM. For logic
devices, the entire device is programmed. For memory devices, specify the following
parameters before you send the P command:

  First address to program from (Memory Begin Address),
  Number of bytes to program (Memory Block Size) and
  First device address to program (Device Block Size).

For SetSite operation, send nnP, where nn is the number of devices in the set you want to
program.  Valid arguments for nn range from 01 to 08.

Q Swap Nibbles   Swaps the high-order and low-order nibbles in a given memory range.
Use the hhhhhh< and hhhhhh; commands to specify the memory begin address and the
size of the memory range to swap. The memory begin address (specified by the
hhhhhhh< command) added to the block size (specified by the hhhhhh; command)
cannot exceed the size of user memory.

Entering a block size of 0 will swap all memory beginning with the address specified by
the hhhhhhh< command. Use the A7] command if you want to swap bytes.

Note: This command will not work if you have a logic device selected.

R
(nnR for
SetSite)

Return Status Of Device   Returns the attributes of the selected device. Data is output in
the form aaaaa/bb/c.  For memory devices, aaaaa indicates the device's word limit in
hex, bb is the word size in decimal, and c = 0 (VOL) or 1 (VOH). For logic devices,
aaaaa indicates the number of fuses and bb is the number of device pins.
For SetSite operation, send nnR, where nn specifies which device socket to return status
about.  Valid arguments for nn range from 01 to 08.



22

ASCII Description
S
(nnS for
SetSite)

View Sumcheck   Returns the sumcheck of the RAM data as a 4-digit hex number. For
memory devices, sumcheck starts at the beginning of User RAM and continues for the
word limit (device size) of the selected device. For logic devices, sumcheck starts at the
beginning of User RAM plus 8 bytes and continues for the device size divided by 8.

For SetSite operation, send nnS, where nn specifies the device socket to sumcheck.
Valid arguments for nn range from 01 to 08.

T
(nnT for
SetSite)

Illegal-bit Test   Tests the selected device for illegal bits. An illegal bit is defined as a
programmed bit in the device that does not exist in RAM.
For SetSite operation, send nnT, where nn specifies the number of devices in the set.
Valid arguments for nn range from 01 to 08.

hhU Set Nulls   Sets the number of nulls after a carriage return on output data transfer
operations. This command also enables/disables sending of a line feed after every
carriage return sent out (for responses too). If the argument is FF, no line feeds or nulls
will be sent after each carriage return. The number of nulls defaults to zero and line feeds
are enabled if no argument precedes the U.

V
(nnV for
SetSite)

Verify Device   Verifies the data in the programmer's RAM against the data in the
socketed device. For logic devices, the entire device is verified. For memory devices, the
Memory Begin Address, Device Begin Address, and Memory Block Size may be set
prior to sending this command.

For SetSite operation, send nnV, where nn specifies the device socket to verify.  Valid
arguments for nn range from 01 to 08

hhhhhhhhW Set I/O Offset   Sets the I/O Offset Address to be used in I/O operations. If FFFFFFFF
precedes the W command, the I/O Offset defaults to 0 for output operations and the first
incoming address for input operations. The I/O Offset defaults to 0 if no argument
precedes the W. For input operations, the address where the data is placed is calculated
by subtracting the I/O Offset from the incoming address and adding to it the Memory
Begin Address. For output operations, the outgoing address is calculated by taking the
address where the data is located, subtracting the Memory Begin Address and adding the
I/O Offset.

X or nX Error Code Inquiry   Returns the last 20 error codes and clears them from memory.
Each error code is returned as a 2-digit hex character. See the section titled "CRC Error
Codes" later in this chapter for explanations of the CRC error codes. A normal prompt >
and a carriage return are returned if no errors have occurred.
Normally, the X command is sent if the programmer returns the F error code, which
means that the previous command failed.
The nX CRC operates the same as the X command if n is 0.  If n is 1, the accumulated
warning codes are returned and the running count of the warning codes is reset to 0.

Y Display Parity Errors   Returns the number of parity errors as a 4-digit hex number and
clears the parity error counter. The parity error counter is also cleared at power on, when
a Y command is sent, or when a parity command (D, E, N) is sent.

Z Exit Remote Control   Exits computer remote control and returns control to the
programmer's terminal interface.

[ View Device Family/Pinout Code   Returns the family/pinout code of the currently
selected device. The family and pinout codes are returned in the form fffppp where fff is
the 3-digit family code and ppp is the 3-digit pinout code.



23

ASCII Description
\ Move Memory Block   Moves data from one RAM location to another. The Memory

Begin Address, Device Begin Address, and Memory Block Size all should be set prior to
execution of this command. The Memory Begin Address is the source address. The
Device Begin Address is the destination address. The Memory Block Size determines the
number of bytes to move. Block size defaults to the size of user memory if the Memory
Block Size is set to 0.

hh^ Clear/Fill RAM With Data   Fills every address within the range defined by the
Memory Begin Address and Memory Block Size with the specified argument. The
Memory Begin Address and Memory Block Size should be set prior to execution of this
command. If you set the Memory Block Size to 0, all of User RAM will be filled with the
data pattern, which effectively wipes out any data you had stored in RAM. If you send ^
without an argument, all of User RAM will be cleared (filled with 00) regardless of how
you specified the block parameters.



24

Description of Extended CRC Commands
The Extended CRC Commands are described in this section. As with the Standard CRC Commands,
the description of commands uses the following notation conventions:
  Lowercase letters indicate arguments that must be specified
  h represents a hexadecimal digit.
  n represents a decimal digit.
  xxx...xxxx represents a string of characters or a filename.  Filenames are limited to 14 total

characters in length: drive specification (2 characters), plus name (8 characters), plus extension (3
characters preceded by a dot).

For example, nn02] indicates that you may precede the 02] command with two decimal digits.

ASCII Description

01] Display System Configuration   Returns system configuration

RRR/SSSS/AAAA/MM/PPP/IIVV/JJVV/KKVV/QQ>

where:

RRR is the current ROM version (UniSite only)
SSSS is the current system version
AAAA is the Algorithm version
MM is the decimal number of 64K-byte banks of RAM memory available
PPP is the decimal number of pin drivers available
II identifies which PSM (small module) is installed (UniSite only):

II Value Module
00 no module is installed
01 Site 40
02 Site 48
03 Site48HS

VV is the version number on UniSite only.
JJ identifies which FSM (large module) is installed (UniSite only):

JJ Value Module
00 no module is installed
01 ChipSite
02 SetSite
04 PinSite
05 USM-340

VV is the version number on UniSite only.



25

KK is a hexadecimal number identifying which Base or module is installed.  KK has
the following values for Bases:

KK Value     2900/3900 UniSite AutoSite/2500
00 No Base

detected
No Base detected No prog. module

detected
01 40-pin DIP Base PLCC/LCC Base ---
02 PLCC Base PGA Base

(version 1)
---

03 --- SOIC Base
(version 1)

300-mil DIP

04 SOIC Base PGA PSBASE-
0402 base (PGA
base version 2)

---

05 48-pin DIP Base PPI Base 48-pin DIP Base
06 --- SOIC PSBASE-

0302 Base (SOIC
Base version 2)

---

07 --- --- 20-pin PLCC
08 --- --- 28-pin PLCC
09 --- --- 32-pin PLCC
0A --- --- 44-pin PLCC
10 PLCC Base --- PLCC Base
11 PGA Base --- ---
12 --- --- 52-pin PLCC
13 --- --- 68-pin PLCC
14 --- --- 84-pin PLCC
15 --- --- 600-mil DIP

(PM 3000 and
7000 only)

16 --- --- 600-mil DIP
(PM2000 only)

60 --- --- SOIC (300- and
450-mil)

61 --- --- SOIC (350- and
530-mil)

62 --- --- 300-mil DIP
(new version)

63 --- --- 600-mil DIP
(new version)

C0 PPI Base (3900) --- ---
E0 PPI Base (2900) --- ---

VV is the version number on UniSite only.
QQ is the decimal number of the PPI Adapter installed (if QQ is 00, no PPI Adapter
is installed)



26

ASCII Description

nn02] Set Upload Wait Time   Specifies the number of seconds the programmer will wait
before uploading data. Valid arguments range from 00 to 99 seconds.

n03] Select Electronic ID   Enables/disables the electronic ID test and also can return the
Electronic ID of the selected device. The argument must be one of 0, 1, or 2, where
0 Disables electronic ID.
1 Enables electronic ID.
2 Returns electronic ID as eight hex digits in the form hhhhhhhh.
Leading zeros are sent for those devices without an 8-digit ID (such as 0000890D).

nn04] Set Remote Port Baud Rate or Set Handler Port Baud Rate   Sets the baud rate for
the Remote (Handler) port. Valid arguments are listed and described below:

nn Baud Rate nn Baud Rate

01 50 10 1500

02 75 11 1800

03 110 12 2000

04 134.5 13 2400

05 150 14 4800

06 200 15 7200

07 300 16 9600

08 600 17 19.2K

09 1200

xxx...xxxx05] Set Host Command   Sets the command string to be sent to the host for upload or
download of data. Valid arguments can range in length from 0 to 58 characters. If no
argument precedes the 05] command, no host command is sent. The programmer
appends a carriage return to the end of the string.

n06] Select Data Bits   Sets the number of data bits for serial data transfers through the
Remote port. Valid arguments are listed and described below:
8 Selects 8 data bits.
7 Selects 7 data bits.

n07] Set Next Set Member   Determines data organization during serial set programming.
For example, if you are programming 4-bit devices and have set the Data Word Width
to 8, setting the Next Set Member (n=2) means that the upper 4 bits of each data byte
(rather than the lower 4 bits) are used to program the device.

n08]
(UniSite w/
SetSite)

Set Programming Mode   Selects the programming mode.  Valid arguments are listed
and described below:
0 Selects single device mode.
1 Selects gang/set mode.



27

ASCII Description

0A] Get Programmer Type   Returns the type of the programmer and whether or not it has
the hard drive/MSM.  It returns one of the following strings:

UniSite

UniSite_MSM

2900

2900_MSM

3900

3900_MSM

AutoSite

AutoSite_MSM

A 3980 programmer will return 3900_MSM.  Also, no 2900 programmer has an MSM,
but the return is shown above in the interest of completeness.  There is currently no
method of discerning from remote mode if the programmer is an xpi model.  The only
indication available is that if it does not have an MSM, then it is not an xpi.

0B] Get Type of Current Device   Returns a hexadecimal number that gives an indication
of the category of device of the currently selected part.  It returns a hexadecimal
number that can take on any of the following values:

1 EPROM

2 Electrically erasable PROM

3 TTL PAL

4 Bipolar PROM device

5 AIM PROM device

6 Electrically erasable PAL device

7 Microcontroller with EPROM

8 POF PAL device

4002 Byte erasable EEPROM

9 Static RAM device - backwards device and power-up diff.

A POF device type which supports packet #17

B LOF device type

C Same as POF_17 but Electrically Erasable

D Some ACTEL FPGA devices

nn22] Set Data Word Width   Specifies, in bits, the width of a data word in the device being
programmed. Valid arguments range from 4 to 64.



28

ASCII Description

n23] Select Number of Verify Passes   Selects the number of verify passes and the type(s)
of voltage(s) used during a verify operation. Valid arguments are listed and described
below:
0 Specifies no verify passes.
1 Performs a single-pass verify with nominal VCC.
2 Performs a two-pass verify, one at the maximum allowed VCC

and one at the minimum allowed VCC value.

n24] Enable Security Fuse   Enables/disables programming the security fuse(s). Valid
arguments are listed and described below:
0 Disables programming the security fuse(s).
1 Enables programming the security fuse(s).

n26] Specify Logic Verify Options   Selects the type of logic verification to perform during
a verify operation.
Valid arguments are listed and described below:
0 Performs the fuse verify test followed by a structured vector test.
1 Performs only the fuse verify test.
2 Performs the structured vector test.

Note: The 2900 does not support vector testing for logic devices with more than 44
pins, regardless of the verify option setting.  The 3900, AutoSite, 2500, and
UniSite do not support vector testing for logic devices with more than 84 pins,
regardless of the verify option setting.

n27] Set/Clear Enable/Disable Security Fuse   Enables/disables programming of the
security fuse and sets the state of the security fuse. Valid arguments are listed and
described below:
0 Disables programming of all security fuses and sets all security fuse states in RAM

to 0.
1 Disables programming of all security fuses and sets all security fuse states in RAM

to 1.
2 Enables programming of all security fuses and sets all security fuse states in RAM

to 0.
3 Enables programming of all security fuses and sets all security fuse states in RAM

to 1.
4 Sets first security fuse state in RAM to 1.
5 Sets second security fuse state in RAM to 1.
6 Sets third security fuse state in RAM to 1.

n28] Fill Fuse Map   Specifies the fuse state with which to fill the fuse map. Valid
arguments are listed and described below:
0 Fills the fuse map in RAM with 0s.
1 Fills the fuse map in RAM with 1s.

n29] Set Reject Count Option   Selects the maximum number of programming pulses
required to program a device before the programmer rejects the device as
unprogrammable. Valid arguments are listed and described below:
0 Selects the number of programming pulses specified by the device

manufacturer.
1 Selects a single programming pulse or military reject count.



29

ASCII Description

hhh2A] Enable Programming Options   Enables one or more programming options. The
argument can be a 2- or 3-digit hex number. Valid arguments are listed below:
Bit 0 (hex 01) = enable illegal bit check
Bit 1 (hex 02) = enable blank check
Bit 2 (hex 04) = enable yield tally
Bit 3 (hex 08) = enable erase EE device
Bit 4 (hex 10) = enable odd/even byte swap
Bit 5 (hex 20) = enable JEDEC I/O translate DIP/LCC
Bit 6 (hex 40) = enable continuity check
Bit 8 (hex 100) = enable special data switch #1 (optional)
Bit 9 (hex 200) = enable special data switch #2 (optional)

hhh2B] Disable Programming Options   Disables one or more programming options. The
argument can be a 2- or 3-digit hex number. Valid arguments are the same as listed for
the 2A] command.

nhh2C] Select Memory Fill Option   Specifies what data User RAM will be filled with before
a download begins. User RAM will be filled with a 2-digit hex number (the hh
argument) when the n argument is 2. Valid arguments for n are listed and described
below:
0 Memory is not changed.
1 Default (unused locations are initialized to the unprogrammed state for the

device type selected)
2 Fill unused memory locations with the specified 2-digit hex number.

hh2D] Vector Test Options   Enables or disables the compensated vector test, serial vector
test, and high speed logic driver options. Valid arguments are listed and described
below:
Bit 0 = 0 to disable compensated vector test
Bit 0 = 1 to enable compensated vector test
Bit 1 = 0 to disable high speed logic driver
Bit 1 = 1 to enable high speed logic driver
Bit 2 = 0 to disable serial vector test
Bit 2 = 1 to enable serial vector test

hh2E] Fill RAM With Non-Repeating Test Pattern   Fills RAM between block limits with
a test pattern that does not repeat on address boundaries.  The first byte of the pattern
will be the value of the two-digit hexadecimal argument.

2F] View 8-Character Sumcheck   Returns the 8-character hexadecimal sumcheck of the
data in User RAM. Refer to the CRC S command for more information.

xxx...xxxx30] Set Data File Name   Sets the filename for any subsequent file operations.

n31] Set Data Source/Destination   Sets the source/destination for a data file. Valid
arguments are listed and described below:

0 RAM
1 Disk



30

ASCII Description

xxx...xxxx33] Select Device Manufacturer   Selects the device manufacturer for device operations
and when adding a device to a Custom Menu. Valid arguments can range from 1 to 13
alphanumeric characters. Valid arguments must also match the manufacturer name
exactly as it appears on the Manufacturer List screen, or as it is uploaded via the 40]
command. The manufacturer selected does not take effect until the 34] command or
64] (for Custom Menu algorithms) is sent to select the device part number.

xxx...xxxx34] Select Device Part Number   Selects the device part number for device operations.
Valid arguments can range from 1 to 29 alphanumeric characters. Valid arguments
must also match the part number as it appears on the Parts Number screen for the
selected Manufacturer, or as it is uploaded via the 40] command. This command
selects an algorithm based on the part number sent in this command and the
Manufacturer sent in the 33] command.

xxx...xxxx38] Load File From Disk   Loads a disk file into RAM. Valid arguments range from 1 to
15 characters. The entire file is always loaded, and the User Data Size is updated to
reflect the size of the file loaded into RAM.

39] Delete All RAM Files   Clears all files stored in User RAM.

xxx...xxxx3B] Delete Disk File   Deletes a disk file. Valid arguments range from 1 to 15 characters
and may include the * wildcard character. For example, to delete the file u1.dat, send
the following command: U1.DAT3B].

n3C] Set Data Transfer Port   Specifies which port (Terminal or Remote) the programmer
will use for CRC data transfer operations (such as the input, output, and JEDEC
input/output commands). Unless specified otherwise, the programmer defaults to the
Remote port for data transfer operations.
This command makes it possible to transfer data to the programmer from a system
other than the one currently running your CRC driver program. The driver program
would be communicating with the Remote port of the programmer and could initiate a
download or upload with a different computer connected to the Terminal port of the
programmer. This is useful if the data files you want to use exist on a system other than
the one running your CRC driver program. CRC commands are still recognized only
on the Remote port. Valid arguments are listed and described below:
0 Remote Port
1 Terminal Port

xxx...xxxx3E] Select Keep Current or Custom Menu algorithm   The Keep Current or Custom
Menu algorithm is loaded from the specified .KCx or .CMx filename. With this
command, Keep Current and Custom Menu algorithms with different revision numbers
may be selected for the same device.



31

ASCII Description

n40] Upload Device Information   Depending on the argument supplied, the n40]
command uploads either a terse list of all the supported devices, information about the
currently selected device, or a verbose list of all the supported devices. Valid
arguments are listed and described below:
0 upload terse device list
1 upload current device information
2 upload verbose device list

Note: The 040] and 240] commands (the terse and verbose lists of devices
supported) share the same format. Certain fields in the terse list are zeroed out, making
the upload quicker.
While the 040] and 240] commands yield results that appear to be insignificantly
different, the two commands operate in ways that can affect the performance of a CRC
driver.
The 240] command needs to access data stored on the Algorithm disk(s) to build the
data stream it returns. This means that the upload of device information could take
longer than desired.
On the other hand, the 040] command does not need to access data on the Algorithm
disk. As a result, the 040] command provides a quicker method of uploading device
support information.
The data fields left blank by the 040] command   the Electronic ID field and the
Module Support field   should not be needed in most CRC driver applications since
that information is not required for device operations. However, if you need the data in
these fields, you can obtain it in one of two ways. You can use the 240] command to
upload the full set of device support information. Or, you can use the 040] command to
upload the terse set of device support information and then use the 140] command to
get information for a particular device after selecting the device.



32

ASCII Description

n40] Upload Device Information (continued)

040] Upload Terse Device List   The 040] command uploads a terse list of all the devices
supported by the programmer. The only difference between the 040] and the 240]
commands is that some fields in the data stream returned by the 040] command are zeroed
out. The zeroed out fields are represented below as "Zeroes". The data is transferred as a
string of characters in the following format:

Definition Number of Bytes
Number of manufacturers 2
<CR><LF> 2 hex
Next is data for EACH device manufacturer, organized as follows:

Device manufacturer's name 1 to 32
Colon 1
Number of devices 3
for this manufacturer

Next, the following is repeated for each device this manufacturer supports:
<CR><LF> 2 (hex)
Device's part number 1 to 32
Colon 1
Family code 4
Pinout code 4
Zeroes 8
Zeroes 2
<CR><LF> next device for this manufacturer . . . etc.
<CR><LF> next manufacturer . . . etc.

140] Upload Current Device Information   The 140] command uploads information about
the currently selected device. If the device has been selected by family/pinout code, the
silicon signature is set to 0. The current part information is transferred as a string of
characters in the format described below.
Definition Number of Bytes
Device manufacturer's name 1 to 32
Colon 1
Device's part number 1 to 32
Colon 1
Family code 4
Pinout code 4
Electronic ID 8
Unused 2



33

ASCII Description

n40] Upload Device Information (continued)

240] Upload Verbose Device List   The 240] command uploads a verbose list of all the
devices supported by the programmer. The only difference between the 040] and the 240]
commands is that some fields in the data stream returned by the 040] command are
zeroed out. The data is transferred as a string of characters, in the following format:

Definition   Number of Bytes
Number of manufacturers 2
<CR><LF> 2 hex
Next is data for EACH device manufacturer, organized as follows:

Device manufacturer's name 1 to 32
Colon 1
Number of devices for this manufacturer 3

Next, the following is repeated for each device this manufacturer supports:
<CR><LF> 2 (hex)
Device's part number 1 to 32
Colon 1
Family code 4
Pinout code 4
Electronic ID 8
unused, reserved field 2
<CR><LF> next device for this manufacturer . . . etc.
<CR><LF> next manufacturer . . . etc.

n41] Upload Self-test Results   performs the following self-tests and reports the results:

141]
241]
341]
441]
541]
641]
A741]
841]
941]

Calibration test
PCU test
FEPROM test
Serial ports test
System RAM test
User RAM test
Floppy disk test, where A is the name of the drive to be tested (the drive character is not
case sensitive)
Base/adapter/relays  test
Pin driver board test

All these tests can be aborted in remote mode with an ESC command.  An aborted test returns an
“F” with error code 0xFF.



34

ASCII Description

n41] Upload Self-test Results (continued)

041] Returns the results of the previous self-test as a 12- (2900), 13- (2500, 3900,
AutoSite), or 30-character (UniSite) string in which each character represents the
results of a different test. The tests and their positions in the string are described
below.  The 2900 returns a 12-character string in the following format:

Character
Position Item Tested

Character
Position Item Tested

1 Spare 7 Disk drive
2 EPROM 8 Option board
3 System RAM 9 Pin driver board #1
4 User RAM 10 Calibration
5 Serial port A 11 PCU (Pin Control Unit)
6 Serial port B 12 Base

The 2500, 3900, and AutoSite return a 13-character string in the following format:
Character
Position Item Tested

Character
Position Item Tested

1 Spare 7 Disk drive
2 EPROM 8 Option board
3 System RAM 9 Pin driver board #1
4 User RAM 10 Pin driver board #2
5 Serial port A 11 Calibration
6 Serial port B 12 PCU

13 Base or module

UniSite returns a 30-character string in the following format:
Character
Position Item Tested

Character
Position Item Tested

1 Spare 16 Pin driver board #7
2 EPROM 17 Pin driver board #8
3 System RAM 18 Pin driver board #9
4 User RAM 19 Pin driver board #10
5 Serial port A 20 Pin driver board #11
6 Serial port B 21 Pin driver board #12
7 Disk drive A 22 Pin driver board #13
8 Disk drive B 23 Pin driver board #14
9 Mass Storage Module 24 Pin driver board #15
10 Pin driver board #1 25 Pin driver board #16
11 Pin driver board #2 26 Pin driver board #17
12 Pin driver board #3 27 Waveform generator bd.
13 Pin driver board #4 28 PCU
14 Pin driver board #5 29 PSM board
15 Pin driver board #6 30 FSM board
Each test can produce one of four result codes, which are described below:
Code Definition
- Hardware not installed
? Untested
F Failed self-test
P Passed self-test



35

ASCII Description

43] Upload Yield Tally   Uploads the yield tally for up to sixteen different devices. The
yield tally is uploaded in the following format (one line is returned for every device entry
in the yield tally statistics file):
Manufacturer's name or family/pinout .....................25 characters
Total parts attempted ...............................................5 characters
Space........................................................................1 character
Total parts passed ....................................................5 characters
Space........................................................................1 character
Total illegal bit/blank errors ....................................5 characters
Space........................................................................1 character
Total verify errors ....................................................5 characters
Space........................................................................1 character
Total structured test errors .......................................5 characters
Space........................................................................1 character
Total program failures .............................................5 characters
Carriage return, line feed .........................................2 characters

46] Clear Yield Tally   Clears the yield tally statistics.

49] Suspend Remote Mode   Suspends remote mode temporarily and returns to Terminal
mode, where menu data will be sent to the port specified by the User Menu Port
parameter. The values for all system parameters will still contain the values they had
while in remote mode prior to the 49] command. Any changes to the parameters will
apply to remote mode when remote mode is resumed.

Note: The programmer will send a prompt back before suspending remote mode. If
neither of the serial ports is connected, however, an error DS will result.

The 49] command allows you to temporarily leave remote mode, perform some
operations and then re-enter remote mode with the system parameters unchanged. For
example, the following scenario would be possible with the 49] command:
1. Enter remote mode.
2. Select a device manufacturer (xxx...xxxx33] command).
3. Select a device part number (xxx...xxxx34] command).
4. Change the setting of some programming parameters, such as illegal bit check, blank

check, etc. (hhh2A] command).
5. Suspend remote mode and return to Terminal mode (49] command).
6. Perform terminal functions, such as viewing a fuse pattern or editing memory.
7. Re-enter remote mode. (At this point, the changes to the programming parameters

mentioned above would still be in place.)
8. Program the device.

Note: The 49] command differs from the Z command (Exit Remote Mode). The Z
command exits CRC and sets the system parameters to the values they had before
remote mode was used. If you enter remote mode after exiting remote mode with
the Z command, the system parameters are set to CRC default values.



36

ASCII Description

n4A] Get Filename From Disk   Displays the current filename or scrolls backwards or
forwards through the filenames of the files found in the disk drive(s). Valid arguments
are listed and described below:
0 uploads the filename of the next file in the directory list
1 uploads the filename of the previous file in the directory list
2 rebuilds the directory list and uploads the filename of the first file
The n4A] command is designed to be used as a front end to the xxx...xxx38]
command. Use the n4A] command to get a filename which can then be sent with the
xxx...xxx38] command to load the file from disk.

n4D] Select Algorithm Type   Selects the set of algorithms to use with the xxx...xxxx33],
xxx...xxxx34], n40], and @ commands. Valid arguments for n are described below:
0 Use the set of algorithms included on the Algorithm disks.
1 Use the extended set of algorithms (if any are available) or algorithms from an

Archive disk.  Devices are selected from the alg.ext file.
2 Use the Keep Current set of algorithms (if any are available).  The Keep Current

algorithms are downloaded from the Keep Current BBS.
3 Use a Custom Menu set of algorithms (if any are available).
The n4D] command lets you switch between algorithms included on the Algorithm
disk and, for example, a collection of Keep Current algorithms. Consider this scenario:
1. Enter remote mode.
2. Select the standard device file (04D] command).
3. Select a device manufacturer (xxx...xxxx33] command).
4. Select a device part number (xxx...xxxx34] command).
5. Program the device (P command).
6. Select the Extended algorithm file (14D] command).
7. Select a device manufacturer (xxx...xxxx33] command).
8. Select a device part number (xxx...xxxx34] command).
9. Program the device with the Extended algorithm (P command).
This example shows how to use n4D] command to select a different algorithm source.

n4F] RAM Device Selection   Enables/disables RAM device selection.  Valid arguments
are listed and described below:
0 Disable RAM device selection
1 Enable RAM device selection; allowed only if the programmer has at

least 4 MB of memory.
The 14F] command instructs the programmer to select the device algorithm from a
special area 1 MB in size located at the high end of user RAM.  After the algorithm file
is loaded into user RAM, the amount of user RAM available to the user is reduced by 1
MB.  When the RAM device selection switch is turned on after the programmer is
booted, the algorithm file is not loaded into user RAM until a device is selected.
When a device is selected, if the algorithm file was not loaded into this special user
RAM area, it will be loaded before the device algorithm is selected.  This causes the
device selection time to be longer than usual for the first device after the switch is
turned on.  Subsequent device selection operations will take approximately one second,
because no more disk accesses are necessary.

Note: PPI Base information file (adapters.sys) is not loaded into RAM even if the
RAM device selection switch is on.  PPI Base information must be accessed
from the disk when devices supported on the PPI Base are selected.



37

ASCII Description

n52] Select Algorithm Source   Depending on the argument supplied, the n52] command
sets the source for device programming algorithms to either the floppy disk or the Mass
Storage Module. Valid arguments are listed and described below:
0 Select algorithms from the floppy drive
1 Select algorithms from the Mass Storage Module (not available on the 2900/3900)

xxx...xxxx53] Save RAM Data to a Disk File   Saves the data in user RAM (in the range specified
by the hhhhhh: and hhhhhh; commands) in a file.  The filename is specified by the
string preceding the 53].

54] Upload Device Footnote (not available on AutoSite or the ProMaster 2500)   Results
in one of the following actions:
If a selected device has a footnote and devfnote.sys is present, the footnote is
uploaded.  If devfnote.sys is not present, the footnote index list is uploaded.  If a
selected device has no footnote, error code B6 is returned.

Definition Number of Bytes
Length of all footnotes to be
uploaded in decimal bytes 2
<CR><LF> 2
Next is data for EACH footnote, organized as follows:
Text of footnote Variable
<CR><LF> 2
If no device is selected, error code 30 is returned.

55] Upload Device-specific Message (not available on AutoSite or 2500)  Uploads
algorithm dynamic messages and device-specific failure or warning messages.  The
output format is as follows:
Definition Number of Bytes
Length of message in decimal bytes 2
<CR><LF> 2

Next is data for the message, organized as follows:
Text of message Variable
<CR><LF> 2



38

ASCII Description

56] and nn56] Upload Memory Failure (not available on AutoSite or PM2500)  
The output format for 16-bit devices is as follows:
DDPAAAAAAAAHHHHhhhh

dd Device socket
P Verify pass indicator:  H = High, N = Nominal, and L = Low

VCC Verify
AAAAAAAA Failed memory location
HHHH Data in User RAM
hhhh Data read from the device

The output format for 8-bit devices is as follows:
ddPAAAAAAAAHHhh

HH Data in User RAM
hh Data read from the device

This command applies only to memory devices and uploads only the first failed
location.
Use the 56] command for single device operations.  The nn56] (where nn is the
number of the device socket and is an integer number from 01 to 08) command is
only available on UniSite.

57] and nn57] Get Checksum of Operation   57] returns the checksum of the last successful
program, load, or verify operation.  If the last program, load, or verify operation was
not successful, the error code BC is returned.
On UniSite, the 57] command can be used for single device operations, and the
nn57] is used with set operations (nn is the device number that ranges from 01 to 08).

58] Uploads the System ID to the CRC Port   Output is in the following format:
HHHH HHHH HHHH
where each H is an ASCII hex character.  This number is also displayed on the
Update screen.

n59] Enable/Disable Capacitor Configuration Test   Enables or disables the capacitor
configuration test.  Valid arguments for n are:
0 Disable capacitor configuration test
1 Enable capacitor configuration test

5A] Returns a list of parameters in the form:
dd:hhhhhhhh:hhhhhhhh:hhhhhhhh:hhhhhhhh:dd:hhhhhhhh:dd>
where dd is a two-digit decimal number and hhhhhhhh is an eight-digit hex number.

The parameters are in the following order:
I/O format number
Memory begin address
User data size
Device begin address
Device block size
Device width
I/O offset address
Data word width



39

ASCII Description

5B] Perform a clear vector operation that clears the vectors in RAM.   If you encounter
incompatible vector data, there may be vectors in RAM from the previously selected
device or file. Perform a clear vector operation to correct this problem.

5C] Load Custom Menu system files from source algorithm drive (derived by the
algorithm media, n52] command, and the CM algorithm drive, n5F] command) to the
RAM file buffer.

5D] Transfer Custom Menu system files from RAM file buffer to the drive specified by
the n5F] command.  This command is used when creating a Custom Menu.
For example, to create a Custom Menu, do the following:
1. Specify the n4D] command to select algorithm type where n can be 0 (default), 1

(extended), or 2 (Keep Current).  (n = 3, Custom Menu, is not allowed.)
2. Specify the n52] command to select algorithm media where n can be 0 (select

algorithms from floppy disk) or 1 (select algorithms from MSM).
3. Specify the n5F] command to select the CM algorithm drive where n can be 0

(place CM files on the disk in drive A), 1 (place CM files on the disk in drive B),
or 2 (place CM files on drive I on an MSM).  The source algorithm drive will be
derived from the CM algorithm drive and the algorithm media.

4. Specify the 5C] command to load CM system files from source algorithm drive
to RAM file buffer.

5. Specify the 5D] command to transfer Custom Menu system files from RAM file
buffer to the drive specified by the n5F] command.

6. Specify the xxxxxxxx33] command to select the manufacturer name for the
device you wish to place in your Custom Menu.

7. Specify the xxxxxxxx64] command to select the device part number for device
you wish to place in your Custom Menu and load the device algorithm into the
RAM file buffer.

8. Repeat the xxxxxxx33] and xxxxxxxx64] commands as necessary to select devices
for your Custom Menu.

9. Specify the 5E] command to transfer the CM algorithm files from the RAM file
buffer to the drive specified by the n5F] command.

Your Custom Menu can be used as a source for selecting devices.  If you later wish
to add a device to your Custom Menu, follow the same steps as described above,
except do not use the 5C] and 5D] commands.

5E] Transfer the CM algorithm files from the RAM file buffer to the drive specified by
the n5F] command.  See the 5D] command for an example of how to use this
command to create or add to a Custom Menu.

n5F] Select the CM algorithm drive, where n can be:
0 (Place CM files on the disk in drive A)
1 (Place CM files on the disk in drive B, if available)
2 (Place CM files on drive I on an MSM, if available)
The source algorithm drive is derived from the CM algorithm drive and the algorithm
media.  If the algorithm media is MSM (152]), the source algorithm drive is always I
(MSM).  If the algorithm media is floppy (052]) and the CM algorithm drive is A
(15F]), the algorithm source drive is B.  Otherwise, the algorithm source drive is A.
See the 5D] command for an example of how to use this command.



40

ASCII Description

60] Get the number of sectors in the selected device (only if sector configuration is
supported on the selected device).  A two-digit decimal number is returned. If the
device does not support sectors, this command returns zero.

n61] Get sector configuration settings (only if sector configuration is supported on the
selected device), where n can be:
0 (get Erase settings for sectors)
1 (get Program settings for sectors)
2 (get Protect settings for sectors)
n61] returns a hex value with each bit representing the data used to configure the
corresponding sector.  The LSB (least significant bit) corresponds to Sector 0.
For example, if 344D were returned by 161] (get sector configuration settings for
Program operation), the number has a binary representation of 0011 0100 0100
1101.  The number 0011 0100 0100 1101 is read from right to left (sector 0 is on the
far right) with a 0 meaning that the program operation is disabled for the sector and a
1 meaning that the program operation is enabled for the sector.  The number 0011
0100 0100 1101 means that sectors 0, 2, 3, 6, 10, 12, and 13 can be programmed; the
other sectors have programming disabled.

nhhhhhhhh62] Set sector configuration settings, where n can be:
0 (set Erase settings for sectors)
1 (set Program settings for sectors)
2 (set Protect settings for sectors)
hhhhhhhh is a hex value  with each bit representing the data used to configure the
corresponding sector.  The LSB corresponds to Sector 0.  It is not necessary to fill in
with leading zeroes.
For example, to set sectors 0, 6, and 7 so that they would be programmed by the next
programming operation, specify 1A162].  (The first 1 tells the programmer that you
are changing the program settings for the sectors.  The A1 is a hex value with a
binary representation of 1010 0001, which tells the programmer to enable
programming for sectors 0, 6, and 7.  The 62] is the CRC code for the command.)

63] Reboot the programmer.

xxxxxxxx64] Select the device part number for a device you wish to place in a Custom Menu
(CM) and load the CM device algorithm into the RAM file buffer.  See the 5D]
command for an example of how to use this command.

A65] Return the software version number (2900/3900 only), where A is the name of the
programmer drive that contains the Boot Files Disk.  The drive name is not case
sensitive.  The version number is displayed as a string of five characters, such as
3.80x, where x may be a blank.

6C] MSM Test – Tests for the presence of the MSM (Mass Storage Module) within the
programmer.  If the MSM is mounted in the programmer, this returns a prompt.  If
the MSM is not present, an error 0xCC is generated.



41

ASCII Description

n6D] Set Checksum Type – Sets the parts of the device image in memory that will be
included in the checksum returned by the “S” CRC command.  This command is
useful for devices that have information in memory beyond the main array.  Sectored
devices, for instance, that have protect information in RAM after the main array.
This command can be used to control whether or not the protect information is
included in the checksum.

The single decimal digit that precedes the command can be one of the following:

0 Default.  Whether the protect information is included in the
checksum is determined by the algorithm.

1 Never.  The protect information is not included in the checksum,
whether the algorithm specifies that it should be or not.

2 Always.  The protect information is always included in the
checksum, whether the algorithm specifies that it should be or not.

3 Disable.  This option specifies that the checksum operation should
not be performed at all.  In this case, the “S” CRC command will
always return 0.  Be careful when using this option!

n70] Get/Test Device Electronic ID – Executes various functions concerning the
Electronic ID of the selected device.  The function executed depends on the value of
the argument n, as shown below:

0 Verify the Electronic ID.  The Electronic ID is read from the
socketed device and compared with the ID expected by the current
device algorithm.  If the ID verifies, the command prompt is
returned.  If not, an error A2 will be generated.

1 Read the Electronic ID from the device.  The ID is read from the
socketed device and returned with the command prompt.

2 The Electronic ID expected by the current algorithm is returned with
the command prompt.

Note:     Reading the Electronic ID from a device requires that an algorithm is first
selected.  Even if the algorithm selected does not strictly match the device,
the selected device algorithm must be similar to the socketed device or the
Electronic ID cannot be properly read from it. If the selected device
algorithm does not have an Electronic ID, an error A1 will be generated.

             The socketed device must be one that allows an Electronic ID to be read
from it.  Otherwise, damage to the device could occur.

71] Stand-alone Device Erase – Causes the socketed erasable device to be erased.  This
command performs the erase operation only and does not perform a byte by byte test
to verify that the erase completed flawlessly.



42

ASCII Description

hh…h72] Save System File – Writes binary information contained in user RAM to a file on
the system drive (drive H:).  The hexadecimal number preceding the 72]
determines how many bytes are written to the file.  The name of the file
is set by the 30] command.

This command is only to be used for updating the programmer’s system
software.  Use of this command for any other purpose may give
unexpected results.

When updating the system software, always use the files from the
supplied CD.  The files supplied on the floppy disks will not work
properly with this instruction.

Included with the system files on the CD in the directory corresponding
to the programmer, there will be a file called “list72”.  This text file
contains a list of all the system files that need to be transferred to the
programmer’s system drive, in the order that they must be transferred.
The file contains one file name per line.  This order is important because
transferring the system.sys file causes all files on the system drive (drive
H:) and the algorithm files from drive I: to be erased before the file is
written.

Note:    When performing a system software update to your programmer, the system
files must be updated using 72], followed by the algorithm files using 73].
Updating the algorithm files first will not work because transferring
system.sys will erase all the algorithm files.

              Also note that although transferring system.sys with the 72] command will
cause all the standard algorithm files to be erased from the I: drive, this will
not erase any of the keep current or extended algorithm files.  These files
need to be individually cleaned from the drive when they are no longer
needed.



43

ASCII Description

hh…h73] Save Algorithm File – Writes binary information contained in user RAM to a file on
the algorithm drive (drive I:).  The hexadecimal number preceding the
73] determines how many bytes are written to the file.  The name of the
file is set by the 30] command.

This command may be used for updating the system software, but also
may be used for uploading keep current and extended algorithms.  If
keeping your extended and keep current algorithms on this drive, be sure
to periodically erase algorithms that are no longer in use to keep the drive
from becoming full.

When updating the system software, always use the files from the
supplied CD.  The files supplied on the floppy disks will not work
properly with this instruction.

Included with the system files on the CD in the directory corresponding
to the programmer, there will be a file called “list73”.  This text file
contains a list of all the algorithm related files that need to be transferred
to the programmer’s algorithm drive – in the order that they must be
transferred.  The file contains one file name per line.

Note:    When performing a system software update to your programmer, the system
files must be updated using 72], followed by the algorithm files using 73].
Updating the algorithm files first will not work because transferring
system.sys will erase all the algorithm files.

              Also note that although transferring system.sys with the 72] command will
cause all the standard algorithm files to be erased from the I: drive, this will
not erase any of the keep current or extended algorithm files.  These files
need to be individually cleaned from the drive when they are no longer
needed.

77] Switch to Parallel Port – Causes control of the programmer to be transferred to the
parallel port.  Once this command is executed, commands coming in
through the Remote port will be ignored.

Note:    Executing this command will cause control to transfer to the parallel port –
whether you are connected to the parallel port or not.  Also, care should be
taken to execute this command only if the programmer is an xpi
programmer with a parallel port.  In some versions of software, using this
command with a programmer that does not have a parallel port will cause
the programmer to lock up – forcing you to recycle power to regain control
of the programmer. Normally, this command will not be needed because if
the parallel port is connected and the Remote port is not, the programmer
will automatically transfer control to the parallel port.  Only if both the
Remote port and the parallel port are connected when entering remote
mode is this function useful.

             Also note that there is no command for transferring control back to the
serial port.  Once control has been transferred to the parallel port, the only
way to use the serial port again is to transfer out of remote mode.



44

ASCII Description

xx…x80] Echo Test – Causes all command line parameters to be echoed back, followed by the
prompt.  This is intended as a test of the parallel port connection.  The
argument can consist of any binary characters of eight bits, up to 72
characters.

This command can be used through the serial port also – but its
usefulness is questionable.  Also note that if this command is used
through the serial port, the most significant bit of any argument
characters will be set to zero before they are returned.

A7] Swap Bytes   Swaps the high bytes and the low bytes in a given memory range. Use
the hhhhhh< and hhhhhh; commands to specify the memory begin address and the
size of the memory range to swap. The memory begin address (specified by the
hhhhhhh< command) added to the block size (specified by the hhhhhh; command)
cannot exceed the size of user memory. Also, the block size must be an even
number.
Entering a block size of 0 swaps all memory beginning with the address specified by
the hhhhhhh< command. This command will not work if a logic device is selected.
To swap high- and low-order nibbles, see the Q command for details.

DC] Device Check   Checks for the presence of a device in the socket. An empty causes
the DC] command to return an F. Error code 3B is returned after the X command is
sent. If a device is in the socket, further device checks are done if the device supports
insertion and socketing tests. For example, the DC] command returns a device
insertion error if the device is mis-socketed. If a device is in the socket and no
continuity errors occur, the DC] command returns a normal > prompt.

DF]
(UniSite
w/ SetSite)

View Status of Sockets   Returns the results of the previous device operation for all
eight sockets (SetSite).  The results are returned in groups of eight 2-digit hex
numbers, separated by a space.  Each group represents data for a particular device.
The first two hex characters contain data for the device in socket one, etc.  The
results are cleared after receiving the & command.  Each bit contains different device
status information:
Bit Status if set to one
7 Error was detected
6 Non-blank device error
5 Device testing or overcurrent error
4 Invalid electronic ID error
3 Illegal-bit error
2 Programming error
1 Verify error
0 Device is in the socket

EB] Input JEDEC Data From Host   Sets the I/O Format to 91 and waits for JEDEC-
formatted data to be sent to the programmer through the Remote port. This command
is valid only for logic devices. All the fuse map and structured vectors will be
received and placed in RAM at the corresponding position.

EC] Output JEDEC Data To Host   Sets the I/O Format to 91 and sends JEDEC-
formatted data from the programmer through the Remote port. This command is
valid only for logic devices. The fuse and vector data in RAM must be valid for the
selected logic device. The complete fuse map and structured vectors are output.



45

ASCII Description

FC] Restore CRC Entry Default Parameters   Sets the CRC parameters to the original
factory defaults.

FD] Restore User-defined CRC Parameters   Sets the CRC parameters to the last saved
user-defined CRC parameters. The user-defined CRC parameters are the same as the
CRC factory defaults if no user-defined parameters have been changed.

FE] Save User-defined CRC Parameters   Saves the current CRC parameters to a disk
as the user-defined CRC parameters.  For UniSite, make sure the System disk is not
write protected and is in a drive.  For other programmers, make sure the Boot Files
disk in not write protected and is in the drive.



46

Error Status Word

The F command returns an 8-character, 32-bit error status word. The following table shows the format
of the error status word.

The 8-character word is broken into four 2-character groups. The first 2-character group defines
receive errors, the second group defines programming errors, the third group defines I/O errors, and
the last group is unused. Each 2-character group contains eight bits, with each bit representing an error
or error type. For each bit, a 1 represents an error and a 0 represents no error.

Bit No. Value Description

Receive Errors 31 8 ANY ERROR. If the word contains any
errors, the most significant bit (bit 31) will
be high.

30 4 Not used
29 2 Not used
28 1 Not used
27 8 Not used
26 4 Serial-overrun error (42)
25 2 Serial-framing error (41,43)
24 1 Not used

Programming Errors 23 8 Any device-related errors
22 4 Not used
21 2 Not used
20 1 Not used
19 8 Device not blank (20)
18 4 Illegal bit (21)
17 2 Nonverify (23, 24, 2B, 2C, A2)
16 1 Incomplete programming (22, 2A, 30, 31)

I/O Errors 15 8 I/O error (46)
14 4 Not used
13 2 Not used
12 1 Compare error (52)
11 8 Sumcheck error (82)
10 4 Record-type error (94)
9 2 Address error (27)
8 1 I/O Format error (84, 90)

Unused 7 8 Not used
6 4 Not used
5 2 Not used
4 1 Not used
3 8 Not used
2 4 Not used
1 2 Not used
0 1 Not used



47

Example:
What errors are indicated in this error status word: 80888000 ?

8   the word contains error information
0   no receive errors
8   device related error
8   device is not blank (error 20)
8   I/O error
0   no errors
0   no errors
0   no errors

Note: The numbers in parentheses are the programmer error codes, defined in the error codes
section of this chapter.
An error can cause as many as 3 bits to be high: the bit which represents the error, the most
significant bit of the 8-bit word in which the error bit occurs, and the bit 31.
After being read, the error-status word resets to zero.



48

CRC Error Codes
Following is a list of error codes that appear while the programmer is being operated in the computer
remote control mode. These error codes will be returned by the programmer after it receives the X
command. Normally, you should send the X command after the programmer sends an F in response to
a command. The list is in numerical order, according to the error code.

Error Explanation
1F Cannot erase device error   Appears after the programmer was not able to erase an

EEPROM. The device may be defective; try another device.

20 Non-blank device   Appears after the programmer has performed a blank check on a device
and has detected bits that are not in their erased or blank state and are not illegal bits. This
error is the result of either the B (Blank Check) command or a P (Program) command with the
blank check option set previously by the extended command 2A (Enable Programming
Option).

21 Illegal bit error   Appears when the programmer has detected a device that has a bit
programmed to the incorrect state. When this error code appears, try erasing the part (if
possible) and then attempt to program the part again. (This error indicates a fatal condition in
non-erasable devices.) If this error code continues to appear, it may be because the device is
defective. Discard the part and try another device. The illegal-bit check error occurs as the
result of either a T (Illegal Bit Check) command or a P (Program) command with the illegal
bit option set previously by the extended command hhh2A] (Enable Programming Option).

22 Device programming error   Appears when the programmer detects a defective memory cell
in a device during programming. If this error code appears, try another device.

Note: The two following errors have the same error code. For either error to appear, you
must have selected command n23] (Select Verify Option). If 1 was specified as the
variable, use the first description. If 2 was specified, use the second description.

23 Verify data error (VCC Nominal)   Appears when the programmer has performed a Verify
and has found a memory cell that was not programmed correctly. The device was verified
while being operated with its normal operating voltage applied. When this error code appears,
try another device.

23 Verify data error (VCC low)   The programmer performed a Verify operation and found a
memory cell that was programmed incorrectly. The device was verified while being operated
with its lowest operating voltage applied. When this error code appears, attempt to program
the device again. If this error code reappears, try a different device.

24 Verify data error (VCC high)   The programmer performed a Verify operation and found a
memory cell that was programmed incorrectly. The device was verified while being operated
with its high operating voltage applied. When this error code appears, attempt to program the
device again. If this error code reappears, try a different device.

27 End of user RAM exceeded   There is not enough user RAM for the amount of data you want
to load into it or program from it. You may have the device block size set too large, or the
beginning RAM address too high. The operation can still be performed, but only part of the
device will be programmed.



49

Error Explanation
28 Fatal device-specific programming error   Generic error code generated by the device-

specific algorithm. Correct the error condition before trying further commands.

29 Non-fatal device-specific programming error   Generic error code generated by the device-
specific algorithm. This error is non-fatal and is for information purposes only. In most cases,
the operation was performed successfully.

2A Device Insertion error   Appears when the device socket is not in the locked position, the
device is inserted backwards or is not bottom-justified in the socket, or the device pins are not
making good contact. Check the device's continuity in the socket, then retry the operation. If
the same error code appears, try a different device.

Note: The two following errors have the same error code. For either error to appear, you
must previously have selected command n23], where n = 0, 1, or 2. If a 0 is chosen,
there will be no error condition. (Select Verify Option.) If 1 was specified as the
variable, use the first description. If 2 was specified, use the second description.

2B Structured test error (VCC Nominal)   The programmer performed a functional test on a
logic device and detected a failure. If you selected Verify Passes = 1, the programmer tried to
verify the logic device at its normal operating voltage. Try another device.

2B Structured test error (VCC low)   The programmer performed a functional test on a logic
device at the low voltage and detected a failure. If you selected Verify Passes = 2, one pass is
performed while the lowest specified operating voltage is applied to the device and the second
pass is performed while the highest specified operating voltage is applied to the device. Try
another device.

2C Structured test error (VCC high)   The programmer performed a functional test of a logic
device at the high voltage and detected a failure. If you selected Verify Passes = 2, one pass
was performed while the lowest specified operating voltage was applied to the device, and the
second pass was performed while the highest specified operating voltage was applied to the
device. Try another device.

2D Base/Adapter for device not installed   The device you selected cannot be programmed in
the base that is presently installed because the device is not supported by the installed base. If
you select a device that uses the PPI base, make sure the correct adapter is installed. Install the
correct base/adapter and try again.

2E Programming hardware hasn't passed self-test   Occurs when a programming operation is
attempted and the self-test had previously failed for critical hardware. Return to local mode
and check the self-test screen.

2F Insufficient pin driver boards installed for the device selected   The device you are trying
to load, program, verify, or check needs more pin driver boards than your programmer has.

30 Bad algorithm  The selected algorithm is somehow corrupted and cannot be used.  Contact
Data I/O.

31 Device over-current fault   You attempted to program a socketed device whose programming
current is higher than the device you selected on-screen. The device may be faulty.  Insert
another device into the socket and try the operation again.

3B No device present   No device was in the socket when a device operation was tried.

40 I/O initialization error   Appears after an attempt to initialize the Remote port has failed.
Check connections and attempt the operation again.



50

Error Explanation
41 Serial-framing error   The Remote port detected a start bit, but the stop bit is positioned

incorrectly. Check the baud rate and stop bit setting for the Remote port, or use hardware
handshaking.

42 Serial-overrun error   The programmer was unable to service the characters received by the
Remote port. Check the baud rate and stop bit settings for the Remote port, or use hardware
handshaking.

43 Serial framing/overrun error   This is a combination of serial-framing error 41 and overrun
error 42. Check the baud rate and stop bit settings for the Remote port, or use hardware
handshaking.

46 I/O timeout   Too much time passed before the programmer received a data file during a
download operation. Use Select I/O Timeout Command (=) to change I/O timeout period.

52 Data verify error   The data from the Remote port did not match the data in RAM. Check the
data and try the operation again.

75 Security Fuse Violation   You tried to load, program, or verify data from a device whose
security fuse is programmed. Use a master device whose security fuse is still intact.

77 Security fuse programming error   The programmer cannot program the security fuse. The
device you are trying to program may be defective. Try programming another device.

79 Preload not supported by this device   A preload vector in the programming data cannot be
applied to the logic device.

81 Serial-parity error   The Remote port detected incoming data that had incorrect parity. Check
the parity setting for the Remote port.

82 Sumcheck error   The sumcheck of the data received (as the result of a download) did not
match the sumcheck downloaded from the host computer. The host computer sends a
transmission sumcheck, and possibly a fuse map sumcheck, as a part of the data record. The
programmer compares those sumchecks with the sumchecks it created on that same data. If the
two sumchecks do not match, this error code will appear, indicating that some of the data
transmitted by the host was not received by the programmer. Try the operation again. If the
problem continues, verify that the sumchecks generated from the host are correct. If the
sumchecks are correct, contact Customer Support.

84 I/O format error   There is a compatibility problem with the data translation format you are
using. Check the format of the data. The Translation Formats section in your Programmer's
User Manual describes all the data translation formats supported by the programmer. Or try
sending a different translator format. If format 04 is selected, this error can indicate an illegal
parameter error. Since this format is word oriented, set the following parameters to even
values:  I/O offset, memory begin address, user data size, and upload record size.

88 Invalid number of parameters   Appears when a CRC command is preceded by an invalid
number of parameters. Correct the situation and re-issue the command.

89 Illegal parameter or invalid operation selected   Appears if an illegal parameter or option
precedes a CRC command. For example, this code is returned if you set the number of verify
passes to 0 and then performing a verify.
This message also appears if you attempt an operation that is not compatible with the selected
device, such as if you attempt a byte swap with a logic device selected.

8A Operation not enabled.



51

Error Explanation
8B Error restoring/saving CRC user-defined parameters or restoring CRC entry defaults.  

An error occurred while attempting to restore or save CRC user-defined parameters
(commands FD or FE) or restoring CRC entry defaults (command FC). This error can also
occur if a problem occurs when attempting to restore an algorithm file.
For UniSite, make sure the System and Algorithm disks (if restoring an algorithm, use the disk
that contains the algorithm) are not write-protected and are in the disk drives.  For other
programmers, make sure the System/Algorithm disk (if restoring an algorithm, use the disk
that contains the algorithm) is not write-protected and is in the disk drive. Use
System/Algorithm Disk 1 if restoring parameters or entry defaults.

8E File error   A disk file error occurred during a command that accesses a disk file, such as
Load File from Disk, Yield Tally, or Select Device. If you are loading a file from disk, check
the filename; it may not exist or may be misspelled. If the filename is spelled correctly, make
sure that the disk in the programmer's disk drive contains the file you are trying to access, such
as a Keep Current algorithm.
If you are doing a Yield Tally or selecting a device, the disk is probably write-protected.
Remove the write-protection and retry the operation. This error code also occurs when the
Algorithm Save area is exceeded during a Save Configuration operation.

8F NON-JEDEC data present in RAM or disk file, or else a NON-logic device was selected
with a JEDEC I/O translation format selected   For a Load File from Disk or device
operation, check your JEDEC data. For an upload operation, select the logic device for the
JEDEC file to be uploaded, or select a different I/O format for a memory device.

90 Illegal I/O format   You tried to select an I/O format that is not supported by the programmer,
or you attempted to select a non-JEDEC format when a logic device was selected. Select a
valid format. See the Translation Formats section in your Programmer's User Manual for a
list of supported formats.

94 Data record error   The data that you attempted to transfer did not conform with the selected
translation format; edit the data file so that it matches one of the programmer's supported
translator formats. See the Translation Formats section in your Programmer's User Manual
for output samples of each translator.

97 Block move error   A block move within RAM has violated the RAM boundaries. Check the
memory begin address and memory block size and try the operation again.

98 End of device exceeded   There is not enough room in the device to hold all the data you have
specified. The device beginning address may be set too high, the block size set too high, or
you may need a larger device. Although the operation may still be performed, only part of the
data will be programmed into the device.

99 End of file exceeded   The memory block size and memory begin address parameters
specified in the Programming screen are too large for the data file to be used for programming.
Change the memory block size and memory begin address file size parameters so they are
small enough to accommodate the data file. You can perform the operation without changing
anything, but only part of the device will be programmed.

9A Algorithm disk cannot be found   Appears if you are selecting a device and do not have an
Algorithm disk in a disk drive of your programmer.  Insert the Algorithm disk in the drive and
send the device selection command again.

9B Incompatible system/algorithm revision numbers.   This error code is returned during a
device selection operation when the version number of the algorithm file is not compatible
with the system software. Insert the disk with the correct algorithm file.



52

Error Explanation
9C Invalid command for this mode   This error occurs if a command received by the

programmer is valid only in set or gang programming mode and the programmer is running in
single device mode.  This error also occurs if the programmer has set mode enabled but the
selected device is not supported in set or gang programming mode.

9D I/O address beyond range of data format selected   An I/O address exceeded the highest
value allowed in the address field of the data format selected. Before it performs an upload or
output to disk operation, the programmer calculates the highest I/O address that will be output
based on the parameters you supply, and aborts the operation if the I/O address is too large for
the data format selected. The formula to calculate the highest I/O address is:
Highest I/O address = I/O addr offset + User data size – 1

Either select a different data format (one that supports the I/O addresses for the transfer
operation) or decrease the value of the I/O offset address and/or the User data size to achieve
I/O addresses within the range of the data format selected. The I/O addr offset parameter is
considered an unsigned value. If it is set to the special default value of FFFFFFFF, it is treated
as a value of 0. Refer to the Translation Formats section in your Programmer's User Manual
for a list of the highest I/O address allowed for each format.

9E Illegal value for Vcc voltage   The value entered for the Vcc variable voltage for the device
was not a legal voltage.

9F Illegal variable voltage operation   Contact Data I/O.

A0 System Files disk not found   The programmer needs the System Files disk present in order
to access a file on that disk.  Insert the System Files disk.  If the programmer has more than
one System Files disk, insert any of these disks.

A1 No Electronic ID   The device does not contain an electronic ID. Turn off the Electronic ID
option or change devices.

A2 Electronic ID verify error   The device you tried to program did not have the correct
electronic ID. Insert the correct device in the socket, or select a different device.

AA Variable verify not supported for selected device.

AB Unable to load system file from system disk   You tried to exit or suspend CRC and the
System or Boot Files disk was not in the disk drive. Make sure the disk is in the drive when
you exit or suspend CRC.

AC Security violation   You tried to use a new version of system software that has not been
installed. Exit remote mode and run the Update command to install the new version.

AE Keep Current algorithm disk not found. Insert your Keep Current algorithm disk   The
Keep Current algorithm file for the specified device is not found.  Insert the disk with the Keep
Current algorithm file for the specified device, and try again.  (Sometimes the 8E error can
occur in place of the AE error.)

AF Operation not allowed because the device was selected by family/pinout code   This error
code is returned when you try some device operations, such as Compare Electronic ID, after
having used a family/pinout code (the CRC @ command) to select a device. Use the
xxx…xxxx33], xxx…xxxx34], and n40] commands to reselect the device using device
manufacturer and device part number. To avoid this error, rewrite your CRC driver to use the
device manufacturer and device part number to select devices.



53

Error Explanation

B0 Capacitor Configuration Error (AutoSite and PM2500 error)   Due to the configuration of
the capacitors on the currently installed programming module, you will not be able to program
the currently selected device.  Normally, this error occurs when a capacitor on the
programming module is located on a device pin that is not a GND, VCC, or NC.

Programming the currently selected device with the currently installed programming module
could result in a marginally programmed device.  A marginally programmed device may test
properly, but is prone to failing in circuit.
To avoid this error, install a programming module with capacitors located only on GND or
VCC pins.  Contact Customer Support for more information on the programming module
required to program the currently selected device.

B1 Block not allowed for bulk erase   You tried to bulk erase part of a device and the device
does not support partial bulk erasing. To bulk erase the device, you must erase the entire
device by setting the Device Begin Address to 0 and the Memory Block Size to the size of the
device.

B2 Partial device operation not allowed      An attempt to program a device failed because of one
or both of the following reasons: 1) the last programming operation attempted to program only
a portion of the selected device (the whole device must be programmed when a programming
operation is used on it), or 2) the User Data is incorrect for the selected device.
To make sure the entire device is programmed, set both the Device Begin Address and the
Device Block Size to 0 (when Device Block Size is set to 0, the system sets the Device Block
Size to the size of the entire device(s)). To make sure the User Data is correct in the device
operation, enter 0 in the User Data Size field (the system sets the User Data Size to cover the
entire device(s)).

B4 Odd Memory Begin Address or User Data Size Incompatible with Data Word
Width   You tried a device operation on a 16-bit (or larger) device and either the Memory
Begin Address is set to an odd number, or the User Data Size is not compatible with the Data
Word Width selected. Frequently, this happens when a 16-bit device is used and the User Data
Size (defined in bytes) is an odd byte count. Adjust your User Data Size (must be even
number) or the Memory Begin Address.

B6 Algorithm doesn't have a footnote    The programmer was unable to display a footnote
(device information) of the currently selected device because it could not find the information
on the disk that is currently installed in the disk drive.  Insert the algorithm disk that contains
the device information for the currently selected device.  If the correct disk is inserted, then no
device information is available for the device.  For further device information, refer to the
Device List On a Disk.

B8 Algorithm Set 1 disk not found   A device select operation failed because the device’s
algorithm resides on the disk that contains algorithm set 1, and this disk is not installed in the
programmer.  Insert the disk that contains algorithm set 1.

B9 Algorithm Set 2 disk not found   A device select operation failed because the device’s
algorithm resides on the disk that contains algorithm set 2, and this disk is not installed in the
programmer.  Insert the disk that contains algorithm set 2.

BA Yield Tally access/update error   There was a problem during yield tally-related operation
(43], 46], 042A], 042B]).  Yield tally operations require the presence of a write-enabled
System disk (UniSite) or Boot Files disk (2900, 3900, AutoSite, ProMaster 2500).

BB Incomplete boot/algorithm file set.



54

Error Explanation

BC Last device operation checksum not available   No successful Load, Verify, or Program
operation has been done since the programmer was last powered up, or the last Load, Verify,
or Program operation was unsuccessful.

BD Algorithm Set 3 disk not found   A device select operation failed because the device’s
algorithm resides on the disk that contains algorithm set 3, and this disk is not installed in the
programmer.  Insert the disk that contains algorithm set 3.

BE Custom Menu disk not found   A device select operation from a Custom Menu file failed
because the device’s algorithm cannot be found on the disk currently installed in the disk
drive.  Insert the Custom Menu disk that contains the algorithm for the device.

BF User RAM files exist   A 5C] command was attempted but cannot be used because user RAM
files are detected in user RAM.  To proceed with the 5C] command, clear all RAM files using
the 39] command.

C0 Too many revisions of the same Custom Menu algorithm   A Custom Menu algorithm
cannot be placed on a disk because Custom Menu algorithms for the same device and same
software version number already exist with the .CMA to .CMZ extensions (26 CM
algorithms total).

C1 Invalid algorithm type   A Custom Menu was selected as the algorithm type for building a
Custom Menu.  Use the n4D] command to select a different algorithm type (supported
algorithm types are default, extended, and Keep Current).

C2 Custom Menu algorithm buffer full   All available user RAM has been used (the Custom
Menu algorithm building process uses user RAM as a buffer).  You can use the 5E] command
to save the contents of the RAM buffer onto the Custom Menu algorithm disk. If you choose
not to do so, you must use the 39] command to free up user RAM.

C3 Extended algorithm disk not found   A device select operation from an extended algorithm
file (14D] command) failed because the algorithm for the device cannot be found on the disk
installed in the disk drive.  Insert the disk containing the extended algorithm for the device.

C4 Algorithm Set 4 disk not found   A device select operation failed because the algorithm for
the device resides on the disk that contains algorithm set 4 and this disk is not installed in the
programmer. Insert the disk that contains algorithm set 4.

C5 Algorithm Set 5 disk not found   A device select operation failed because the algorithm for
the device resides on the disk that contains algorithm set 5 and this disk is not installed in the
programmer. Insert the disk that contains algorithm set 5.

C6 Algorithm Set 6 disk not found   A device select operation failed because the algorithm for
the device resides on the disk that contains algorithm set 6 and this disk is not installed in the
programmer. Insert the disk that contains algorithm set 6.

C7 Algorithm Set 7 disk not found   A device select operation failed because the algorithm for
the device resides on the disk that contains algorithm set 7 and this disk is not installed in the
programmer. Insert the disk that contains algorithm set 7.

C8 Algorithm Set 8 disk not found   A device select operation failed because the algorithm for
the device resides on the disk that contains algorithm set 8 and this disk is not installed in the
programmer. Insert the disk that contains algorithm set 8.

CA Sector operations not supported for this device  The currently selected algorithm does not
support sector operations.  This is usually caused by executing the 61] or 62] commands with a
device algorithm selected that does not support sector operations.



55

Error Explanation
CB Sector protect operations not supported for this device   The currently selected algorithm

does not support the protection of sectors.  This is usually caused by executing the 261] or
262] commands with a device algorithm selected that does not support the protection of
sectors.

CC No MSM operations supported for this programmer   The attempted operation requires the
presence of an MSM (Mass Storage Module) and the programmer does not have an MSM
installed.

D1 RAM File Internal Error   Call Customer Support.

D2 RAM file not found   An operation with a RAM file, such as program device from a RAM
file (using a P command after a 231] command), failed because the RAM file (specified by the
xx...xxx30] command) cannot be found in user RAM.  Make sure your data source (specified
by the n31] command) and file name are correct.

D3 RAM File Internal Error   Call Customer Support.

D4 RAM File area exhausted   An attempt to create a RAM file failed because there was not
enough RAM space remaining for RAM files or there were not enough directory entries left
for RAM files..

D5 Port transfer error   Appears when you try to transfer data over a serial port which is not
properly connected. If this error occurred after using the n3C] command to set the data port to
the Terminal port, ensure that the Terminal port is properly connected.

E0 Socket not empty during self-test    The self-test operation was invoked while a device was
in the socket.  The self-test cannot safely or accurately proceed with a device in the socket.

E1 Floppy diskette not installed during self-test    The floppy diskette drive cannot be tested
without the presence of a floppy diskette.  Insert any formatted floppy and try the operation
again.

E2 Drive B is not available    A self-test of the programmer’s drive B was attempted although the
programmer is not equipped with a second floppy diskette drive.

E3 No PSM or FSM installed    A self-test of the PSM and FSM was requested, but neither the
PSM nor FSM are actually installed.

E4 Self-test failure – The requested test failed.

E5 MSM format failure    A self-test of the MSM showed that the format information on the
internal hard drive is not correct.

E6 MSM test failure    A self-test of the MSM indicated a problem with either reading or writing
information to the internal hard drive.

E7 Not installed    The requested item to be tested was not installed.

E8 Unknown adapter    The installed adapter cannot be identified.

E9 Not calibrated    The Calibration self-test must pass before the PCU test can be performed.

EA PCU not tested    The Calibration and PCU self-tests must both pass before the pin driver
board test can be performed.

FE Undefined error   An error occurred that the CRC program could not categorize. Document
the method in which the error occurred and call Customer Support to report the problem.



56

Error Explanation
FF Operation aborted at programmer   This error can occur if the current SetSite operation is

halted prematurely: for example, if the programmer was in the process of programming
devices and the SetSite socket lever is moved to the Open (stop) position.  To correct the
problem, close the socket lever and restart the operation.



57

XPI Parallel Port Interface

Introduction

This section covers technical information on the behavior of the xpi parallel port interface for those
who wish to write their own programmer driver software.  Data I/O xpi programmers can still be
driven in Remote Mode through the serial port just like their predecessors.  The parallel port functions
in Remote mode in a manner very similar to the Remote serial port - only faster.  Since
command/prompt format of Computer Remote Control is the same whether you operate the
programmer through the serial or the parallel interface, this section will only cover the differences
between the two.

Overview

The xpi parallel port on the programmer is designed to be connected to a standard printer port on the
IBM compatible personal computer.  The original printer port was designed to pass information in
only one direction: from the computer to the printer.  Therefore, in order to get information to flow in
both directions through this port, signals on the printer port will need to be used in ways they were
never originally intended.  Status lines will be employed to send information back to the computer
from the programmer and one of the control lines will be commandeered to indicate the direction of
data flow.

Sending a command to the programmer is fairly straightforward.  The computer has complete control
over the direction of information transfer between the computer and the programmer through the
Direction line.  The computer sets the Direction line to the “transmit” state indicating a transfer from
the computer to the programmer.  It then waits for a ready status from the programmer on the
-Ready/Nybble line.  At that time, it presents data to the programmer and toggles the -Strobe line.
The computer then waits for the ready status again, then either sends another character or sets the
Direction line back to the “receive” state, indicating to the programmer that the information transfer is
complete.

Normally, the Direction line will spend most of its time in the “receive” state.  It will only be pulled to
the “transmit” state when the computer wishes to send a new Remote Mode command, or wishes to
discontinue the operation in progress.  The programmer is only able to send information to the
computer when the Direction line is in its “receive” state.

Receiving information from the programmer is a bit trickier than sending it.  Since the printer status
lines must be used to send information to the computer, and there are very few of these status lines,
information can only be sent to the computer four bits at a time.  Four bits of information is often
referred to as a “nybble”.  When the –Ready/Nybble line goes low, this indicates that the low order
nybble of information can be read from the printer status lines.  Once the computer has read the low
order nybble it signals that it is ready for the next nybble by toggling the –Strobe line.  When the
–Ready/Nybble line goes back high, it indicates that the high order nybble of information can be read
from the printer status lines.  Once the computer has read the high order nybble, it signals this by
toggling the –Strobe line again.  This continues until all bytes of the transfer are complete.

Although the computer can communicate the start and end of the information it wishes to send to the
programmer by changing the state of the Direction line, there is no analogous line that the
programmer can use to indicate the start and end of the information it sends back.  The computer must
infer when it has received the last byte from the programmer by interpreting the information itself.



58

Signal Descriptions

The following is a table that shows the pin numbers of the computer’s printer port, the name of the
signal on each pin as it applies to a standard printer, and the name of the signal on the same pin as it
applies to the Data I/O xpi parallel port.

Standard Parallel Port Function Name Data I/O Parallel Port Function Name

Pin 1 -STROBE Direction

Pin 2 DATA 0 +TD0

Pin 3 DATA 1 +TD1

Pin 4 DATA 2 +TD2

Pin 5 DATA 3 +TD3

Pin 6 DATA 4 +TD4

Pin 7 DATA 5 +TD5

Pin 8 DATA 6 +TD6

Pin 9 DATA 7 +TD7

Pin 10 -ACK -RD1/5

Pin 11 +BUSY -RD0/4

Pin 12 +PE -RD2/6

Pin 13 +SLCT -RD3/7

Pin 14 -AUTO FD XT N.C.

Pin 15 -ERROR -Ready/Nybble

Pin 16 -INIT -Strobe

Pin 17 -SLCT IN N.C.

Pin 18 GND GND

Pin 19 GND GND

Pin 20 GND GND

Pin 21 GND GND

Pin 22 GND GND

Pin 23 GND GND

Pin 24 GND GND

Pin 25 GND GND

Note: The signal descriptions will refer to “bringing (some signal) high” or “bringing (some
signal) low”.  This refers to the actual voltage on the pin of the computer’s printer port.  The
same is true for all waveform diagrams.  All signals are five-volt TTL levels.  A “high” refers
to bringing the signal above 3.5 volts and a “low” refers to bringing the signal below 0.8
volts.  Each of these signals is controlled by bits in hardware registers inside the computer.
Please note that it may be necessary to set one of these register bits low in order to bring the
signal at the port pin high – and vice-versa.  Again, to avoid confusion, this document will



59

refer only to the TTL level present on the actual pin of the computer’s parallel port and will
make no reference to the values present in the computer’s internal registers.

Following is a description of each of the signals listed above:

Direction (pin 1)

This pin sets the direction of data transfer on the parallel port and is controlled by the computer.  It is
pulled high internal to the programmer with a 5mA current source.  When this line is high, data may
flow from the programmer to the computer.  When this line is low, information (usually commands)
may flow from the computer to the programmer.

There are only two restrictions on when this line may change.  One is that when transferring
information from the computer to the programmer, you must wait until the –Ready/Nybble line goes
low before bringing the Direction line high or the last byte sent to the programmer may be lost.  The
other restriction is that you must wait at least 7 microseconds after the last high to low transition of the
–Strobe line before bringing the Direction line low.

+TD0 through +TD7  (pins 2 through 9)

These are the eight data lines that transfer information from the computer to the programmer.  They
are controlled only by the computer.  These lines have positive logic.  That is, a high voltage on the
pin will transfer a logic 1 to the programmer.  +TD0 is the low order bit and +TD7 is the high order
bit.

-RD0/4, -RD1/5, -RD2/6, -RD3/7  (pins 11, 10, 12, 13, respectively)

These are the four data lines that transfer information from the programmer to the computer.  They are
controlled only by the programmer.  These lines have negative logic.  That is, a high voltage on the
pin will refer to a logic 0 from the programmer.  The low order nybble is always transferred first on
these pins.  That is, data bits 0 through 3.  Then the high order nybble will be transferred, or data bits
4 through 7.

-Ready/Nybble  (pin 15)

The function of this pin is different depending on the state of the Direction line.  If the Direction line
is high, and data is being transferred from the programmer to the computer, this line functions as the
Nybble line.  If the Direction line is low, and data is being transferred from the computer to the
programmer, this line functions as the –Ready line.

When transferring data and commands from the computer to the programmer, this line goes low when
the programmer is able to receive data.  This line will go high a few nanoseconds after the falling edge
of the –Strobe line. It will go low again after the programmer has read the states of the +TD0 through
+TD7 lines.  Once this line has gone low, the next data may be set up on the +TD0 through +TD7
lines or the Direction line may be set high to indicate the end of the data or command.

When transferring data or response information from the programmer to the computer, this line goes
low when the low order four bits of data are present on the –RD0/4 through –RD3/7 lines.  This line
and the data will change at the same time.  After the computer has read this information, it must then
toggle the -Strobe line. A few microseconds after that, this line will go high indicating the presence of
the high order four bits of data on the –RD0/4 through –RD3/7 lines.  Again, this line and the data
will change at the same time.  Again, the –Strobe line should be toggled after this information is read.
If there is more data, in a few microseconds, the Nybble line will go low again.



60

-Strobe  (pin 16)

This line is normally held high.  Its function is triggered by its high to low transition.  It therefore only
needs to be held low for a few nanoseconds at a time.  This pin is pulled high internal to the
programmer with a 5mA current source.

The function of the –Strobe pin is different depending on the state of the Direction line.  If the
Direction line is high, and data is being transferred from the programmer to the computer, this line
indicates to the programmer that the computer has received the last nybble sent by the programmer
and that it may send the next.  If the Direction line is low, and data or commands are being transferred
from the computer to the programmer, this line indicates that data is present on the +TD0 through
+TD7 lines that the programmer needs to read.

Basic Operations

This section describes how to do various operations with the parallel port.  The most obvious
operation is the transfer of data and commands.  There are other functions, however, that are
performed in a manner very different from that of the serial ports.  Discontinuing a data transfer, for
instance, or just powering on the programmer, may be handled in unexpected ways when the parallel
port is involved.  That’s what this section is about.

Sending commands to the programmer

The programmer is at your beck and call.  There are no maximum timings and no timeouts on the
parallel port.  The computer has full control and may run the parallel port as slowly as it wants or as
quickly as the programmer is able to take it.

Figure 3 below shows the rough appearance of a typical command sent from the computer to the
programmer.  In this case, it is a three-byte command.

Figure 3.  Typical waveform of data transfer from the computer to the programmer.

The last byte of a Remote mode command to the programmer must be a carriage return.  It is also
possible to end a command with a carriage return and a line feed.  The line feed may precede or
follow the carriage return or be absent altogether, but the carriage return character must be present.
Note that all line feed characters are ignored, but NULL characters (ASCII 0x00) are not.  The serial
port ignores NULL characters, but a NULL character sent to the parallel port is significant.

Note: The Direction line signals the start and end of a Remote mode command.  The programmer,
in fact, will do nothing but wait for more characters while the Direction line is held low.  It
will wait for the Direction line to go high before processing the command.  Note also that
exactly one command must be sent between transitions of the Direction line.  When sending
the escape character, it is considered a complete command in itself.



61

To send a command to the programmer, first bring the Direction line low.  Within a few nanoseconds,
the –Ready/Nybble line will go low, indicating that the programmer is ready to receive the first
character of the command.

Immediately after the –Ready/Nybble line goes low, data for the character may be presented to the
programmer on the +TD0 to +TD7 lines.  After that, a few nanoseconds must be allowed for the data
to propagate to the programmer’s data register, then the –Strobe line may be brought low.  The high
to low edge of the –Strobe line both alerts the programmer that data is available to be read and causes
the –Ready/Nybble line to go high.  It will take a few nanoseconds for the high to low transition of
the –Strobe line to propagate through to the –Ready/Nybble line.  Since only the high to low
transition of the –Strobe line is important, the –Strobe line may be brought high again only a few
nanoseconds after bringing it low.

Although Figure 3 shows the computer changing the data on the +TD0 through +TD7 lines after the
–Ready/Nybble line has gone low, the data may actually be changed a few nanoseconds after the high
to low transition of the –Strobe line.  Before the –Strobe line may be brought low again to send this
new byte of data to the programmer, though, the computer must wait for the –Ready/Nybble line to
go low.

The programmer will generally take a few microseconds to process the data between the falling edge
of the –Strobe line and the falling edge of the –Ready/Nybble line.  The next –Strobe line high to
low transition may occur immediately after the –Ready/Nybble line has gone low.

Note: When the last byte of the command (usually a carriage return) has been sent to the
programmer by toggling the –Strobe line, the computer must wait for the –Ready/Nybble line
to go low again before bringing the Direction line high, signaling the end of the command.
Failure to wait for the –Ready/Nybble line to go low before bringing the Direction line high
may result in the last character of the command being dropped.

Sending data to the programmer using the “I” command

There is a special protocol for sending data to the programmer with the Remote mode “I” command.
Since the “I” command is a command in itself, the –Direction line must be brought high after sending
the “I” followed by its carriage return.  The –Direction line must then be held high for at least 7
microseconds before it may be brought low again, signaling the start of the data transmission.

Once the –Direction line has been brought low to signal the start of the data transfer from the
computer to the programmer, it must not be brought high again until after the last byte of data has
been sent.  When the –Direction line goes high, the programmer will assume that there is no more
data forthcoming and will issue its prompt or error return at that time and will begin to wait for a new
Remote mode command.

Receiving data or status from the programmer

During normal operation of the programmer, the –Direction line will, most of the time, be held high
by the computer.  While the –Direction line is high, the programmer may send status information to
the computer.  Normally, the programmer will only send status or information to the computer in
response to a command sent by the computer.



62

Figure 4 below shows the rough appearance of a typical response sent from the programmer to the
computer.  In this case, it is a three-byte return.

Figure 4.  Typical waveform of data transfer from the programmer to the computer

The indication that the programmer has information available for the computer is the state of the
–Ready/Nybble line.  Within a few nanoseconds of the Direction line going high, the
–Ready/Nybble line will become active.  At this time, it will usually be high, indicating that no data is
ready from the programmer.

When status information or data is available from the programmer, the –Ready/Nybble line will go
low.  This will indicate that the low order nybble of the first data byte is available on the –RD0/4 to
–RD3/7 lines.  Note that the state of the –Ready/Nybble line changes at the same time as the –RD0/4
to –RD3/7 lines.  There is, therefore, no setup time between when the data becomes available and the
–Ready/Nybble line indicates that data is available.

Immediately after the –Ready/Nybble line goes low, the computer may pull the –Strobe line low,
indicating to the programmer that the data on the –RD0/4 to –RD3/7 lines has been read by the
computer.  Only the high to low transition of the –Strobe line is important to the programmer, so the
–Strobe line may be brought high again a few nanoseconds after it was brought low, depending on
propagation delays, etc.  Within a few microseconds of the –Strobe line high to low transition, the
high order nybble of the first byte will be placed on the –RD0/4 to –RD3/7 lines and the
–Ready/Nybble line will go high.  At this point, the computer may read the high order nybble data
from the –RD0/4 to –RD3/7 lines.  When the computer has read this information, allowing the
assembly of the complete first byte, the computer must bring the –Strobe line low, then high again to
indicate this.

This completes the transmission of the first byte from the programmer to the computer.  If another
byte is available, the –Ready/Nybble line will once again go low.

The computer may bring the –Strobe line low any time after it has read the current nybble from the
programmer.  This high to low transition may occur any time from immediately after the transition of
the –Ready/Nybble line, to days later.  There is no timeout.  The data will be held on the –RD0/4 to
–RD3/7 lines until the high to low transition of the –Strobe line.  After the –Strobe line transitions
from high to low, there is usually a delay of a few microseconds before the next change of the –RD0/4
to –RD3/7 and –Ready/Nybble lines.

Note: When bringing the Direction line low after receiving data from the programmer, the high to
low transition of the Direction line must occur at least 7 microseconds after the last high to
low transition of the –Strobe line.  Failure to allow at least 7 microseconds between the last
strobe of a nybble read and the start of a new command could cause the programmer’s
parallel port state machine to get out of sync with the computer.  If this happens, a garbage
character may be inserted in the upcoming command before sync is restored.



63

Powering up the programmer

Data I/O programmers are able to determine if a serial connection has been made to either the
Terminal or Remote ports even if no data is being transferred on the connection.  Unfortunately, this is
not true of the parallel port.  The programmer is unable to tell if a computer is connected to the
parallel port.  It can, however, tell if commands are being sent to the programmer on the parallel port
because in order to do that, the 5mA current source on the Direction line must be pulled to ground.

When the programmer powers up, it looks to its ports to determine which mode it will come up in.  If
it sees something connected to its terminal port, it will come up in terminal mode.  If it only sees
something on its Remote port, it will come up in Remote mode and expect commands from the serial
Remote port.  If nothing is connected to either of these serial ports, it will wait until either something
becomes connected to one of the serial ports, or a command comes into the parallel port.  If a
command comes in through the parallel port, the programmer will go into Remote mode and expect
commands from the parallel port.

This means that if you have written your own driver, have only the parallel port connected to your
programmer, and are waiting for the Remote mode prompt (>) to come to you before sending any
commands, you could be waiting a very long time.

If you have something connected to the Remote port on the programmer as well as the parallel port
and are waiting for a prompt to come from the parallel port, you could again be waiting for a very long
time.  The programmer will issue its prompt to the serial Remote port and expect commands to come
from there.  If you want to control the programmer through the parallel port and you have both the
Remote port and parallel ports connected to your computer, you must first issue a 77] command to the
programmer through the serial port.  This will cause control to transfer to the parallel port.  The
parallel port on your computer will receive its prompt and you are ready to go.

If, however, you are powering on your computer with only the parallel port connected, there is a
special procedure you should follow in order to get the Remote mode prompt that tells you the
programmer has booted and finished its self-test.

The best way of accomplishing the power up of the programmer is to continually send escape
characters to the programmer until it responds.  This is probably best accomplished by pulling the
Direction line low, presenting the escape character (0x1B) on the +TD0 to +TD7 lines, then toggling
the –Strobe line low for at least a few nanoseconds.  Do not wait for the –Ready/Nybble line to go
low before toggling the –Strobe line. Remember, the programmer may still be running boot and test
software and may not have time to look at the parallel port just yet.

Once the escape character has been strobed into the parallel port, keep the Direction line low until
either the –Ready/Nybble line goes low, or a timeout of your choosing has passed.  A good timeout
value might be two milliseconds.  After seeing the –Ready/Nybble line go low or waiting for the full
timeout, bring the Direction line back high and watch the parallel port for the Remote mode prompt
character.  If the Remote mode prompt character (>) does not come back within some timeout period
(again, two milliseconds would be good), then pull the Direction line low and strobe another escape
character into the programmer, waiting again until either the –Ready/Nybble line goes low or the
timeout period has expired.  Repeat this operation until the programmer has either come up, or until so
much time has elapsed that you suspect a problem with the parallel interface or the programmer.

Discontinuing a device operation

Canceling a device operation is accomplished with the parallel port much the same as it was done with
the serial port.  Just send an escape (0x1B) character to the programmer.  This consists of bringing the
Direction line low, presenting the escape character to the +TD0 to +TD7 lines, toggling the –Strobe
line, then waiting for the –Ready/Nybble line to go low before bringing the Direction line back high.
At this point, the programmer should respond with the Remote mode prompt (>) character.



64

Discontinuing a data transfer to the programmer

The computer has more control of a data transfer through the parallel port than it does through the
serial port.  With the serial port, the computer must stop sending characters and then wait until the
programmer has figured out that you’ve stopped sending characters, which will mean the computer
will be waiting for some timeout period.

With the parallel port, in order to stop a transfer to the programmer, simply pull the Direction line
high.  The programmer will know immediately that the transfer has stopped and will shortly issue the
Remote mode prompt (>) character.

Discontinuing a data transfer from the programmer

Causing a halt to a data transfer from the programmer to the computer is accomplished in much the
same way as canceling a device operation.  Simply send an escape to the programmer.  This is done by
pulling the Direction line low, presenting the escape character (0x1B) to the +TD0 to +TD7 lines,
toggling the –Strobe line low for at least a few nanoseconds, then waiting for the –Ready/Nybble
line to go low before bringing the Direction line back high again.

This should terminate the data transfer and cause the Remote mode prompt (>) to be sent to the
computer.

The only restriction on this operation is that the Direction line must not go low before 7 microseconds
have elapsed since the last high to low transition of the –Strobe line.  To pull the Direction line low
too soon could result in throwing the parallel port communications temporarily out of sync.

Data transfer timeouts

Your computer interface program is king.  There are no timeouts.  You could make the programmer
wait for days between characters, if you like.  It will wait.


